
User Guide

Book 4
Development

2015 Release 4 Xojo, Inc.

Preface

Xojo Guide

Book 4: Development

ii

© 2015 Xojo, Inc.

Version 2015 Release 1

This Xojo User Guide is intended to describe Xojo for both
developers new to Xojo and those with significant experience
with it.

The User Guide is divided into several “books” that each focus
on a specific area of Xojo: Fundamentals, User Interface,
Framework and Development.

The User Guide is organized such that it introduces topics in the
order they are generally used.

The Fundamentals book starts with the Xojo Integrated
Development Environment (IDE) and then moves on to the Xojo
Programming Language, Modules and Classes. It closes with the
chapter on Application Structure.

The User Interface book covers the Controls and Classes used to
create Desktop and Web applications.

The Framework book builds on what you learned in the User
Interface and Fundamentals books. It covers the major
framework areas in Xojo, including: Files, Text, Graphics and
Multimedia, Databases, Printing and Reports, Communication

and Networking, Concurrency and Debugging. It finishes with
two chapters on Building Your Applications and then a chapter
on Advanced Framework features.

The Development book covers these areas: Deploying Your
Applications, Cross Platform Development, Web Development,
Migrating from Other Tools, Code Management and Sample
Applications.

Copyright
All contents copyright 2014 by Xojo, Inc. All rights reserved. No
part of this document or the related files may be reproduced or
transmitted in any form, by any means (electronic, photocopying,
recording, or otherwise) without the prior written permission of
the publisher.

Trademarks
Xojo is a registered trademark of Xojo, Inc. All rights reserved.

This book identifies product names and services known to be
trademarks, registered trademarks, or service marks of their
respective holders. They are used throughout this book in an

Section 1

About the Xojo User Guide

3

editorial fashion only. In addition, terms suspected of being
trademarks, registered trademarks, or service marks have been
appropriately capitalized, although Xojo, Inc. cannot attest to the
accuracy of this information. Use of a term in this book should
not be regarded as affecting the validity of any trademark,
registered trademark, or service mark. Xojo, Inc. is not associated
with any product or vendor mentioned in this book.

4

The Guide uses screen snapshots taken from the Windows, OS X
and Linux versions of Xojo. The interface design and feature set
are identical on all platforms, so the differences between plat-
forms are cosmetic and have to do with the differences between
the Windows, OS X, and Linux graphical user interfaces.

• Bold type is used to emphasize the first time a new term is
used and to highlight important concepts. In addition, titles of
books, such as Xojo User Guide, are italicized.

• When you are instructed to choose an item from one of the
menus, you will see something like “choose File ↠ New Pro-
ject”. This is equivalent to “choose New Project from the File
menu.”

• Keyboard shortcuts consist of a sequence of keys that should
be pressed in the order they are listed. On Windows and
Linux, the Ctrl key is the modifier; on OS X, the ⌘ (Command)
key is the modifier. For example, when you see the shortcut
“Ctrl+O” or “⌘-O”, it means to hold down the Control key on a
Windows or Linux computer and then press the “O” key or hold
down the ⌘ key on OS X and then press the “O” key. You re-
lease the modifier key only after you press the shortcut key.

• Something that you are supposed to type is quoted, such as
“GoButton”.

• Some steps ask you to enter lines of code into the Code Edi-
tor. They appear in a shaded box:

ShowURL(SelectedURL.Text)

When you enter code, please observe these guidelines:

• Type each printed line on a separate line in the Code Editor.
Don’t try to fit two or more printed lines into the same line or
split a long line into two or more lines.

• Don’t add extra spaces where no spaces are indicated in the
printed code.

• Of course, you can copy and paste the code as well.

Whenever you run your application, Xojo first checks your code
for spelling and syntax errors. If this checking turns up an error,
an error pane appears at the bottom of the main window for you
to review. 

Section 2

Conventions

5

1. Deploying Your Applications

1.1. Windows Deployment

1.2. OS X Deployment

1.3. Linux Deployment

1.4. Web Deployment

1.5. iOS Deployment

2. Cross-Platform Development

2.1. User Interface Layout

2.2. Conditional Compilation

2.3. OS X Features

2.4. Windows Features

2.5. Localization

3. Web Development

3.1. Optimizing Web Applications

3.2. Porting Desktop Applications

3.3. Mobile Support

4. Migrating from Other Tools

4.1. Visual Basic

4.2. Microsoft Access

4.3. FileMaker

4.4. Visual FoxPro

5. Code Management

5.1. Sharing Code Between Projects

5.2. Using Source Control

6. Unit Testing

6.1. XojoUnit

Section 3

Table of Contents

6

7. Sample Applications

7.1. Sliders

7.2. Eddie’s Electronics

7

Chapter 1

Deploying
Your
Applications
In this chapter you will learn how to deploy your
desktop and web applications.

CONTENTS

1. Introduction

1.1. Windows Deployment

1.2. OS X Deployment

1.3. Linux Deployment

1.4. Web Deployment

On Microsoft Windows, applications are deployed using
installers.

Any installer tool will work on your apps,
including: InnoSetup, Advanced Installer,
NSIS and InstallShield.

Note: These installer tools all have to be run on
Microsoft Windows in order to create a
Windows installer. However, InnoSetup does
work with WINE to allow it to be run on OS X or
Linux.

Installer Files
When you create your installer, you need
to tell it to include all the files necessary
to run the application. At a minimum, this includes the EXE file
and the contents of its associated Libs folder.

For example, an application called Sliders would create a file
called “Sliders.exe” and a folder called “Sliders Libs”. The Libs
folder contains DLLs for libraries, plugins and other associated
files needed by your application.

If your application has other support files or folders, such as a
Resources folder, then make sure that your
installer includes them as well.

Setup.exe or MSI
Most installer tools allow you to create your
installer as a Setup.exe file or as an MSI
(Microsoft Installer) file.

Either work fine, but MSI files have the
advantage of being the current recommended
method from Microsoft and can be used by IT
departments for better control of installations.
Choose what works best for your customers.

Location and Shortcuts
Windows applications are installed to the Program Files folder.
On 64-bit systems, your applications are installed to the Program
Files (x86) folder (because they are 32-bit).

Windows users expect to have easy access to your application,
so this means you should create easily accessible shortcuts.

Section 1

Windows Deployment

9

Figure 1.1 Advanced Installer

Your installer tool should provide you with the option of creating a
shortcut for the user on the Desktop and in the Start Menu.

Zip
For very simple distribution, you can Zip the application and its
supporting files (such as the Libs folder). You can create a Zip by
right-clicking on the parent folder in Windows Explorer and
selecting Send To->Compressed (zipped) Folder.

Once unzipped, the application can be run from any location.

Although this can be useful for testing purposes, it is not
recommended for proper Windows application deployment.

Microsoft Redistributable Files
Your applications require the Microsoft Visual C++ Runtime. The
required files are included in the Libs folder (msvcp100.dll and
msvcr100.dll) of your applications for your convenience.

However, for increased Windows compatibility, you should
instead consider including the Microsoft Visual C++ Runtime
Redistributable Installer as part of your installer.

To do this you do not include the msvcp100.dll and msvcr100.dll
files that are in the Libs folder and instead embed the Microsoft
Visual C++ Runtime Redistributable as part of the installer. Most
installer tools have a way to do this automatically.

The advantage of doing it this way is that the Visual C++ Runtime
Redistributable will install its files into the Windows system folder,
which allows them to be updated by Microsoft Windows Update
for security and other reasons.

If you leave your Visual C++ Runtime files in the Libs folder then
they cannot be updated by Windows Update.

As of this writing, you can download the Visual C++ Runtime
Redistributable from here:

http://www.microsoft.com/en-us/download/details.aspx?id=5555

10

http://www.microsoft.com/en-us/download/details.aspx?id=5555
http://www.microsoft.com/en-us/download/details.aspx?id=5555

Generally, OS X applications consist of a single App file, called
the Application Bundle. You can embed other files into the
Application Bundle because it is technically a folder that OS X
treats as a file. In Finder, you can right-click on any App and
select “Show Package Contents” to see the actual contents of
the Application Bundle as a folder.

Of course, your application can still have separate files not in the
Bundle, in which case you want to make sure that your
application is in a folder of its own.

Since applications are technically a folder, you have to include
them in some sort of container in order to distribute them, such
as disk images (DMG), installers and even simple Zip files.

Disk Images (DMG)
A disk image is a file that the user downloads. After
downloading the file (and double-clicking it), it appears in the
sidebar of the Finder as a drive. This is called “mounting” the
disk image. When the user clicks on the drive in the Finder
sidebar, they see your application and typically drag it to the
Applications folder to install it.

To create a disk image, you can use the Disk Utility application
included with OS X or try one of the many specialized disk image
creation tools such as
DMG Canvas.

A disk image is
probably the most
common way to install
OS X applications, but
keep in mind that
some users (especially
those new to OS X)
may find the concept
of mounting a drive

Section 2

OS X Deployment

11

Figure 1.2 DMG Canvas

and dragging a file to the Applications folder very confusing.

Also keep in mind that if the user mistakenly tries to run the
Application directly from the disk image, it may not behave as
expected because the disk image is read-only.

Installers
OS X can also use an actual installer to install your application,
but it is not common for applications distributed outside the Mac
App Store. To create an installer you can use the PackageMaker
tool (included with the OS X Development tools) or you can use
the free Packages installer.

An installer gives you more control over permissions and other
settings, but they can be much more difficult to create than a
simple disk image.

Also, remember that an installer on OS X (a pkg file) is actually a
bundle so you have to distribute it in a disk image or a Zip.

Zip
A Zip file is an archive of your application. A zip is easy to
download and most users understand what they are. They can
usually be unzipped by simply double-clicking on them, which
reveals the application itself. The application can then be copied
to the Applications folder.

You can create a Zip by right-clicking on your application in the
Finder and selecting Compress.

12

Code Signing for GateKeeper
OS X 10.8 introduced a new feature called GateKeeper.
GateKeeper is designed to provide a level of security for users
installing applications. Essentially, if the application (or its
installer) is not digitally signed using an Apple-provided certificate
then OS X will not allow the application to be installed by default.

This can be overridden by the user right-clicking on the
application (or installer) and selecting Open, but not many users
will know about this.

This means you are probably going to want to digitally sign your
OS X applications. To get a certificate, you have to join the Mac
Developer Program ($99). Your certificate is good for five years.

You use Certificate Utility in the Mac Dev Center to create a
certificate (you can use the same certificate for all your
applications).

Once you have followed the instructions to create the certificate
and have installed it on your computer, you can use it to code
sign your application using this command:

codesign -f -s "Developer ID Application:
YourName" "YourXojoApp.app"

Code signing must be done as the absolute last step. If you
modify anything inside your application bundle (such as Info.plist),
you will invalidate the signature and have to code sign again.

Note: If you are using an installer then you have to sign the installer
separately using a special installer certificate.

13

Mac App Store
The Mac App Store is a great way to distribute your OS X
applications. People find it easy and convenient to purchase
applications from the Mac App Store. Unfortunately, getting
applications into the Mac App Store is not easy or convenient for
the developer.

Sandboxing
Sandboxing is used to restrict what your application is able to
access. This serves as a security feature, because if an app were
to become compromised for some reason then it would be
unable to do as much damage as if it had full control of the
computer.

Sandboxing works best with Cocoa applications, although it does
work for Carbon applications (with some Apple restrictions).

Certificates and Code Signing
To be able to submit an application to the Mac App Store for
Apple to review, you need to first create your Mac App Store
certificates using the online Certificate Tool that is part of the Mac
Dev Center. You also need to create a bundle ID for your
application.

When your application is complete, you then need to code sign
your application (and all its dynamic libraries). You also need to
create the installer and code sign that as well.

Finally you can create a submission using iTunes Connect, fill in
all the required information and then upload your application
using the Application Loader tool that is part of the OS X
Development Tools.

Once you have submitted something to the Mac App Store, it can
take several weeks before your application is approved by Apple
and ready for sale.

Validating The Apple ID
The above steps work great for any apps, including free apps, but
if you are selling your app, you will want to prevent people from
copying the purchased app to another computer and running it
there (without having to log into their Apple ID). To do this you
also need to verify the Apple ID.

Verifying an AppleID requires calling a Cocoa API. The code is far
too involved to include here, but there is a sample project in the
“Platform Specific” folder for OS X that you can reference.

14

Linux applications also have a variety of deployment options.
The simplest is to use GZip and let the user put the application
wherever they want. You can also use a tool such as
InstallJammer that creates a generic installer that works with a
variety of Linux platforms. Lastly, you can create separate
installers for each Linux distribution. Common installer formats
are deb (used by Debian and Ubuntu) and RPM (RedHat
Package Maker) used by RedHat.

Generic Installer
InstallJammer is an open-source product that has a simple user
interface for creating an installer that works on a variety of Linux
distributions.

Unfortunately, this tool is no longer being actively developed, but
it still works well and is a good choice if you do not use Linux
often enough to master creating dedicated installers.

Section 3

Linux Deployment

15

Figure 1.3 Install Jammer

Debian Installer
Debian installers are used by Debian-based Linux distributions,
such as Ubuntu. They can be installed by the Synaptic Package
Maker or from the terminal.

You create Debian installers using the dpkg-deb terminal
application. Unfortunately, its usage is far more involved than can
be discussed in this book.

This tutorial describes how you can create a Debian package:

http://tldp.org/HOWTO/html_single/Debian-Binary-Package-
Building-HOWTO/

Redhat Installer
The Redhat installer format (RPM) is used by Redhat-based Linux
distributions.

You can create RPM installers using the rpmbuild terminal
application. Unfortunately, its usage is far more involved than can
be discussed in this book.

The Fedora Project does have a good walkthrough, which is
available here:

http://fedoraproject.org/wiki/How_to_create_an_RPM_package

16

http://tldp.org/HOWTO/html_single/Debian-Binary-Package-Building-HOWTO/
http://tldp.org/HOWTO/html_single/Debian-Binary-Package-Building-HOWTO/
http://tldp.org/HOWTO/html_single/Debian-Binary-Package-Building-HOWTO/
http://tldp.org/HOWTO/html_single/Debian-Binary-Package-Building-HOWTO/
http://fedoraproject.org/wiki/How_to_create_an_RPM_package
http://fedoraproject.org/wiki/How_to_create_an_RPM_package

You can create two types of web applications, Stand-alone and
CGI. In addition to differences in how they operate, they are also
deployed differently.

Stand-alone Application
When you create a stand-along web application, you get a single
application that consists of both your application and a
standalone web server. This web server listens on the port
specified in the Build settings.

To start a stand-alone web application, you simply run the
application from the command line or terminal. This command
runs a standalone web app on OS X or Linux:

./mywebapp

You can run multiple stand-alone web applications on the same
server, but each web application has to be listening on a unique
port. To make this easier, you can specify the port as a
command-line parameter:

./mywebapp --port=8080

If you have the port set at 8080 for example, then you can
access the web server using the URL followed by the port like
this:

http://www.myserver.com:8080

Section 4

Web Deployment

17

http://www.myserver.com:8080
http://www.myserver.com:8080

Command Line Parameters
You can use these command-line parameters to change settings
when you launch the web application.

Command Description

--Port
The port the web app listens to for a

connection. This can be used to change the
port that was used to build the web app.

--MaxSockets

The maximum number of allowed connected
sockets. This is not the number of maximum
users as the number of connections does not

map one-to-one with the number of
connected users. Do not set the value too
high as it will increase memory and CPU

usage. The default is 200.
If you do not want any unsecured
connections, set this value to 0.

--SecurePort
The port the web app listens to for a secure
connection. This can be used to change the

port that was used to build the web app.

--MaxSocketsSockets

The maximum number of allowed secure
connected sockets. This is not the number of

maximum users as the number of
connections does not map one-to-one with
the number of connected users. Do not set

the value too high as it will increase memory
and CPU usage. The default is 200.

--NetworkInterfaceIndex The index value (of NetworkInterfaces) to use
as the NIC for connections.

--SecureNetworkInterfaceIndex The index value (of NetworkInterfaces) to use
as the NIC for secure connections.

Using Port 80
In order to navigate to a stand-alone web application without
specifying the port, you need to use port 80, the standard port
used by web browsers. However, OS X and Linux do not allow
you to use port 80 (or any port lower than 1024) unless you have
root access.

This means that on OS X and Linux you need to use the sudo
command to start your web application if you are using port 80:

sudo ./mywebapp

Note: The sudo command prompts you for your user name and password.

Background Processing
When you run your web application directly from the command
line, it will continue running as long as you don’t quit the
command/terminal window or log out of the account.

This technique does not work well on true servers or remote
servers. In these cases you want to run the web application as a
background process. On Windows this means, you would run the
web app as a Windows Service. On Linux it means you would
run it as a Daemon. On OS X, you can run it as a daemon or use
the preferred launchd command to start it as a daemon.

18

Deploying with SSL
In order to deploy a standalone web application so that it uses
SSL, you first need an SSL certificate. You can use a self-signed
certificate for local testing, but always purchase a real certificate
for publicly available web sites.

The certificate file used by Xojo is a text file containing the
components of your SSL certificate. Generally, a self-signed
certificate will have two components (the certificate and key file)
while a purchased certificate will likely have three or more
(certificate, key, CABundle or intermediates). Create the text file
with the same name as your application (minus the app extension
if any) and add the ".crt" extension. Then paste the contents of
your certificate files in this order:

1. Certificate

2. CABundle

3. Private Key

Start each file on a new line.

This Xojo certificate file must be placed next to the built web app
when it runs. This can be done using a Copy Files Build Step with
Build Automation.

Now you can start your web app and tell it to listen for
connections on a secure port. This uses the secureport and

maxsecuresockets command-line parameters described in the
preceding section. The secure port must be different than the
(non-secure) port selected in the Shared Properties within Xojo. It
also must be different than a port specified with the port
command-line parameter.

For example, if you want to launch your web app on secure port
8081, use this command:

MyWebApp --secureport=8081

Once you have launched the app, you can connect to it in the
browser like this (for a web app running locally):

https://127.0.0.1:8081

If you also want to prevent unsecured access to the web app, you
can set the number of unsecured sockets to 0:

MyWebApp --secureport=8081 --maxsockets=0

19

WINDOWS SERVICE

To run a web application as a Windows Service, you use the sc
command from the Command Line to install the app as a service:

sc create MyWebAppSvc type= own start=
auto binpath= c:\Path\To\Exe\mywebapp.exe

Now you can go to the Services Manger in the Control Panel and
see the “MyWebAppSvc” service listed. Use Services Manager to
Start, Stop or Pause the service.

DAEMON

To make your stand-alone web application run as a daemon
background process, you call the Daemonize method, usually in
the App.Open event:

#If Not TargetDebug Then
 If Not Daemonize Then
 Print(“Unable to Daemonize app.”)
 Quit
 End If
#Endif

When you now run the stand-alone web application from the
terminal, it will immediately return you to the terminal prompt
because the app is now running in the background.

This also works on OS X, but Apple prefers that you use the
launchd command to start daemons. Using launchd means you
have to create a Property List file with the specific settings.

For more information, refer to Apple’s documentation on this:

http://developer.apple.com/library/mac/#documentation/
MacOSX/Conceptual/BPSystemStartup/Chapters/
CreatingLaunchdJobs.html

20

CGI Application
When you build your web application as a CGI application, you
get an executable file that communicates to your existing web
server using CGI (common gateway interface).

The way this works is that a small Perl CGI script is created when
you build your web application. Its only purpose is to
communicate between your web application and the web server.
The Perl script starts your web application if it is not running and
routes all communication between the web server to your web
application and vice versa.

When you build your web application for CGI, you have the option
of choosing a port or having it be chosen automatically. This is
an internal port that is used for communication between the Perl
script and your web application. Because this is internal
communication, the firewall is not affected. The only requirement
is that nothing else on the server is also using the port.

Nearly all web servers support CGI and Perl, but some are much
easier to configure than others.

Apache
The most common type of web server you will see is Apache.
This is typically preinstalled on all Linux servers.

Most Apache servers have a specific location where CGI
applications should be uploaded. This is often called the “cgi-
bin” folder.

On a properly configured web server, deploying a web application
is as simple as using your FTP client of choice to copy the entire
web application folder’s contents to the cgi-bin folder (be sure to
enable Binary mode for the transfer). The files include:

• The web application itself

• The Libs folder

• config.cfg

• the Perl CGI file

• The .htaccess file (which may be hidden in the default view of
your FTP software)

Then you can start the web application by accessing the cgi
script:

http://www.myserver.com/mywebapp.cgi

Troubleshooting
Unfortunately, not all servers are going to be properly configured
to run Xojo web applications. You may find that you have to
change the configuration yourself. These are some common
areas to check. Unfortunately, step-by-step instructions are not

21

possible because every installation of Apache is different, having
configuration files in different places with different web server
users and different permissions. Use these tips as guidelines, but
you’ll still need an understanding of Apache and how it has been
installed on the OS you are using.

• Platform: Verify that you uploaded the correct platform for your
web application. Although you may be developing and testing
on OS X, if you are using a Linux server you need to remember
to make sure that you create a Linux build to upload.

• 32-bit Libraries: Your application is a 32-bit application. To run
it on a 64-bit version of Linux, you need to ensure the 32-bit
compatibility libraries are installed. The command to do this
varies depending on the Linux distribution. With Debian, you
can use apt-get: 

apt-get update
apt-get install ia32-libs-multiarch

• Application Identifier: Verify that the Application Identifier is
unique. If there is another web app running on the server with
the same Application Identifier, then your new app will not start.

• Permissions: Verify that your CGI application and all the libraries
in the Libs folder have been copied to the server and have
execute permissions (755 is best). You may also need to check

the parent folder as well the config.cfg and Perl CGI script. 
Permissions of 777 are not secure and some web servers (that
use seEXEC) will not run anything with that permission.

• AddHandler: If your web application displays the page source
rather than running, you may need to add the command
“AddHandler cgi-script .cgi” to your Apache configuration file or
to the .htaccess file generated with your web application.

• Internal Server Error: If the Perl CGI script is having trouble
starting you may see this error. Verify that Perl is installed
correctly and permissions are correct.

• Unable to Launch Application: The Perl CGI script is unable to
start your application. Usually you will see additional
information such as “permission denied”. Verify that your web
application was uploaded using FTP Binary mode (and not
ASCII, which can corrupt the application files).

• Unable to Connect to Port: The port may be blocked for some
reason. Perhaps the firewall is blocking a local port or the port
is in use by another application or service. If you have selected
a port, make sure it is > 1024 and < 65536.

• Web Server Logs: Your web server logs may have additional
useful information. Unfortunately, the location of these logs
varies depending on the Linux distribution and version.

22

IIS (Microsoft Internet Information Services)
Included with Windows is a web server called IIS. This web
server is ideally suited for running simple HTML web sites, .NET
web applications and other specific Microsoft web products.

By default, IIS does not have a Perl installation and does not work
well with CGI.

Although Xojo web applications do work with IIS, properly
configuring it is an advanced task. Unless you absolutely require
IIS, it is recommended you instead configure Apache to run on
Windows and use it instead.

These are the official instructions for installing Apache on
Windows:

http://httpd.apache.org/docs/2.2/platform/windows.html

Deploying with SSL
Because a CGI app uses a separate web server, you have to
ensure your web server (typically Apache) is configured to work
with SSL and your SSL certificate.

You do not have to do anything specific with your Xojo CGI web
app in order to deploy it as SSL.

Xojo Cloud
If all this setup and configuration is too much
to bother with, you should consider hosting
your web application using Xojo Cloud. This service allows you
to deploy a web application directly from Xojo in one step.

With Xojo Cloud, you just check the “Xojo Cloud” target in Build
Settings for your web project and then select it to specify the
name of the application and the Xojo Cloud server on which to
deploy. Then you simply click the Deploy button in the toolbar
and your app is built and uploaded to your Xojo Cloud server.

23

Figure 1.4 Xojo Cloud Build Setting

http://httpd.apache.org/docs/2.2/platform/windows.html
http://httpd.apache.org/docs/2.2/platform/windows.html

Control Panel
You can purchase a Xojo Cloud
server from the Xojo Store. Once
it is provisioned, you can access the Control Panel from your
Accounts page on the
Xojo web site.

The Control Panel
displays your servers
(including the IP
address) and can performs these actions:

• Restart: Restarts the Xojo Cloud server.

• Rename: Give the
server a new name.

• List Apps: Displays all
the Xojo apps that
have been deployed to
the Xojo cloud server.
From here you can Quit or Delete apps.

• Setup SSL: Walks you through the process of getting a CSR
(Certificate Signing Request) to use to purchase an SSL
Certificate that you can then use on your server.

• Delete: Deletes the Xojo Cloud server.

• PostgreSQL: Enables or disables PostgreSQL database server,
providing you with a username and password.

• MySQL: Enables or disables MySQL database server, providing
you with a username and password.

• Tunnel: Enables or disables an SSH tunnel (providing you with a
username and password) to allow you to connect to
PostgreSQL/MySQL from your own computer.

Deployment
The built app's name has a suffix if the Stage Code (in the Shared
Build Settings) is set to Development (-Dev), Alpha (-Alpha) or
Beta (-Beta).

This allows you to deploy apps for testing without affecting an
app that is running in production.

Set the Stage Code to “Final” to remove any suffix.

PostgreSQL and MySQL Usage
Once you enable PostgreSQL or MySQL database on your Xojo
Cloud server, connecting to the database in a deployed app
works exactly as if the DB was on your local computer. There are
no special steps to do.

If you want to access a DB on Xojo Cloud from your computer,
you will have to enable the Tunnel and then connect to the tunnel
from the computer. On OS X and Linux, you can use this
command to access the tunnel:

24

ssh -L 5432:localhost:5432 dbadmin@ipaddress -N

If you are using Windows, you will need to use an external app
such as PuTTY. There are a number of tutorials available on the
internet, just put “putty ssh tunnel” into your favorite search
engine.

Firewall
When using classes that have to communicate outside the server
(database or socket classes, for example), you need to use the
XojoCloud.FirewallPort class to first open the port.

Dim fwp As New XojoCloud.FirewallPort(587, _
 XojoCloud.FirewallPort.Direction.Outgoing)
fwp.Open() // This call is synchronous
If fwp.isOpen() Then
 // Do what you need to do
 fwp.Close() // Close port when done
End If

25

All methods of iOS deployment require an iOS Developer
membership with Apple. You can sign up at http://
developer.apple.com.

Device Deployment for Testing
Running in the iOS Simulator is fast and convenient, but it does
not work exactly like an iOS device. To build for a device, you
need to create a certificate, App ID, devices and a Provisioning
Profile in the iOS Dev Center. You can find information on how to
do this in the online documentation:

https://xojo.helpdocsonline.com

App Store Deployment
Once your app has been tested, you can submit it to the review
process for the App Store. To do this you need additional
certificates and provisioning profiles. Plus, you will need to set up
the app information in iTunes connect. You can find information
on how to do this in the online documentation:

Online Documentation

Enterprise Deployment

For apps that you want to distribute to your organization, but do
not want to submit to the App Store, you can the Enterprise
deployment option and the Apple Configurator tool to install the
apps on the devices in your organization. You can find
information on how to do this in the online documentation:

Online Documentation

Section 5

iOS Deployment

26

http://www.apple.com/
http://www.apple.com/
https://xojo.helpdocsonline.com
https://xojo.helpdocsonline.com
https://xojo.helpdocsonline.com
https://xojo.helpdocsonline.com

Chapter 2

Cross-
Platform
Development
This chapter describes how you can create cross-
platform applications. Topics include, user interface
layout, conditional compilation, localization, and
OS-specific features.

CONTENTS

2. Cross-Platform Development

2.1. User Interface Layout

2.2. Conditional Compilation

2.3. OS X Features

2.4. Windows Features

2.5. Localization

When designing your applications to be cross-platform, you
should keep in mind the differences in user interface across the
different platforms.

An application that is well designed for Windows may look
drastically out of place on OS X or Linux. And vice versa.

Menus
ApplicationMenuItem
Desktop applications usually have an About menu that displays
an About window with the name of the application and its
copyright information.

On Windows and Linux, this About menu appears in a Help
menu, which you can add by clicking the “Add Menu” button in
the Menu Editor.

On OS X, the About menu instead should appear in the
Application menu.

To make your About menu automatically move on OS X, you add
your About menu to the Help menu so that it appears as
expected for Windows and Linux. You then change its Super

property in the Inspector from “MenuItem” to
“ApplicationMenuItem”. Any menu that uses this class will be
automatically moved to the Application menu when it is run on
OS X.

PrefsMenuItem
Similarly, the Preferences menu is also located in the Application
menu on OS X. On Windows and Linux, the Preferences menu is
often located in the Edit menu and is instead called “Options”.

There is always a fixed Preferences menu in the Application
menu on OS X. To attach your Preferences menu to it, you set its
Super property to “PrefsMenuItem”. Only one menu in your
project should be set to PreferencesMenuItem.

To change the name of the Preferences menu for OS X and
Windows/Linux, you would use a constant. By default there are
several constants on the App class that control the text for Edit-
>Clear/Delete and File->Quit/Exit. You can add another to
handle preferences.

Add a new constant and call it kPreferences, setting its default
value to “&Options...”.

Section 1

User Interface Layout

28

In the Constant Editor, click the “+” to add a new entry and select
“OS X” as the Platform. For the Value, enter “Preferences...”

Now that you have created the constant, you can use it as the
text of the menu. Add a new
MenuItem to the Edit menu and set its
Text property to “#App.kPreferences”.
This tells it to use the value of the
constant. Also set its Super to
“PrefsMenuItem”.

You can use the preview buttons in the
Menu Editor toolbar to see the text
change between OS X, Windows and
Linux.

In addition, when you run the application on OS X, the
Preferences menu appears in the Application menu instead of the
Edit menu.

Dialog Buttons
Perhaps you have never noticed it, but when you use a dialog box
on Windows and Linux, the
buttons are in a different
order than they are on
OS X.

On OS X, the default OK/
Cancel buttons display as
Cancel followed by OK.
On Windows and Linux
they appear as OK
followed by Cancel.

For your applications to look
proper on each platform, the
buttons should appear in the
appropriate positions. The
easiest way to do this is to
us a ContainerControl to
swap the buttons for you at
run-time.

The example project
OKCancelContainer in the
Desktop->Custom Controls folder demonstrates how to do this.

29

Figure 2.2
Preferences Menu
Properties

Figure 2.4 Print Dialog on
Windows Showing OK
Followed by Cancel Button

Figure 2.3 Print Dialog Showing
Cancel Followed by Print (OK)
Button

Figure 2.1 Adding a Preferences Constant

Fonts
Normally you will use the System font as the Font for your
controls. This tells your application to use the default system font
as the font for the control. As you might expect, the default
system font varies by platform.

This means that some controls may end up being too small on
some platforms to fit the text you provided. It is important that
you run your project on each platform and review the layout to
make sure that everything is readable and fits as you expect.

You may find that you need to increase the size of some controls
so that they display properly on all platforms. You can do this in
the Layout Editor by increasing the size of a control. Or you can
do it at runtime by increasing the size of the control in its Open
event depending on the platform being used (see the Conditional
Compilation section). This code in the Open event handler of a
PushButton increases its size when running on Linux:

#If TargetLinux Then
 Me.Height = Me.Height + 20
#Endif

Graphics and Flickering on Windows
OS X and Linux use a technique called double-buffering for all
window drawing. This means that updates to a window are done
offscreen and then shown on the actual screen in one update.
This results in stable, flicker-free windows and graphics updates.

Windows, however, does not use this technique. It sends
updates to the Window immediately. This can often result in
unsightly flicker when running an application on Windows, but
there are strategies to mitigate this.

Do not Overlap Controls
The easiest thing you can do to prevent flickering is to not overlap
any controls. Overlapped controls result in more requests to
redraw the controls which results in flickering.

Use a Canvas
For best results, display any graphics using the Paint event of a
Canvas control. Stay away from using the Window Paint event,
the Canvas.Backdrop property or the ImageWell control.
Although those techniques work fine in certain situations, they
often lead to flickering in more complex window layouts.

On the Canvas, the first thing you want to do is enable the
DoubleBuffer property and disable the EraseBackground
property. The DoubleBuffer property allows the Canvas to do its
updates offscreen to minimize flicker. The EraseBackground
property prevents the Canvas from being erased (and showing as

30

a white rectangle) before it is redrawn, which is a common source
of flicker.

Now you can do all your drawing in the Paint event using the
supplied graphics object, g.

Note: Do not do any drawing directly to the Canvas.Graphics property. This
will likely increase flickering and will definitely slow down graphics updates.

You can have separate methods that update the graphics, but
they need to be called from the Paint event with the graphics
object supplied to the methods as a parameter.

When you want to update the graphics in the Canvas, you call the
Invalidate method:

Canvas1.Invalidate(False)

You can also call the Refresh method:

Canvas1.Refresh(False)

The difference is that Invalidate tells the Canvas to update itself
when it gets a redraw request from the operating system. The
Refresh method tells the Canvas to update itself immediately.
Normally you want to use Invalidate.

Both of the above have an EraseBackground parameter, which
defaults to True. This means that the Canvas is erased before the
contents are redrawn. In most cases, you do not want the
erasing to occur, so you should specify False as the
EraseBackground parameter.

By using these techniques, you can create stable, flicker-free
graphics in your Windows applications.

31

In the process of creating an application that runs on multiple
platforms, you may find that you have some code that is only
needed on a single platform.

An example of this might be code that saves preferences. On
Windows you might want to use the Registry, but on OS X you
might want to use a plist.

You can handle these special cases using conditional
compilation.

Conditional Compilation
With conditional compilation, you are telling the compiler to
include or exclude specific parts of your code depending on
what is being compiled. This is done using the #If command in
conjunction with #Else, #ElseIf and #Endif.

You can use these commands along with any constant to
selectively include or exclude code when building.

These are some of the built-in constants you can use:

• TargetMacOS: True when doing a build for OS X, False for
anything else.

• TargetCarbon: True when doing an OS X Carbon build, False
for anything else.

• TargetCocoa: True when doing an OS X Cocoa build, False for
anything else.

• TargetHasGUI: True for desktop and web applications, False
for console applications.

Section 2

Conditional Compilation

32

• TargetLinux: True on apps built for Linux, False for anything
else.

• TargetWeb: True for web applications, False for anything else.

• TargetWin32: True on apps built for Windows, False for
anything else.

• TargetCloud: True on apps deployed to the Xojo Cloud, False
for anything else.

• TargetRemoteDebugger: True on apps running through the
Remote Debugger, False for anything else.

• DebugBuild: True when your app is running in the Debugger,
False when it is running as a standalone build.

• VersionString: Returns the version being used in the format:
2014r1

The constants can be used like this:

#If DebugBuild Then
 // Activate logging
 App.Logging = True
#Else
 App.Logging = False
#Endif

This structure could be used to handle saving preferences
differently:

#If TargetWin32 Then
 // Use Registry
 SavePreferencesToRegistry
#ElseIf TargetMacOS Then
 SavePreferencesToPList
#ElseIf TargetLinux Then
 SavePreferencesToXML
#Endif

You can even use your own constants, such as this to check if a
beta has expired:

#If App.BetaBuild Then
 // Check if expired
 Dim now As New Date
 If now.Year > 2012 Then
 Quit
 End If
#Endif

33

Selecting a Target for a Class/Method in
Inspector
You can specify if a particular project item (excluding Windows)
should only be included for certain project types.

For example, you may have a class that you only want to include
when you are creating a web application.

You do this using the “Include In” properties in the Advanced tab
of the Inspector. To get to the Advanced tab, click the gear

button: .

In the inspector, you now see the Include In section, which allows
you to specify the targets to
include. Your choices are
Desktop, Web and Console.
Select No to exclude the class
(or selected method) from the
appropriate target. By default,
each target is set to Yes.

You can also set “Include In” for
methods, properties, constants,
event definitions, enums, structures, delegates and anything else
you can add to a project item.

Figure 2.5 Include In
Targets

34

Cocoa
Cocoa is the current user interface framework supported by
Apple on OS X.

If you are moving an older project from Carbon (an older OS X UI
framework) to Xojo, your existing applications should just work
for the most part, but there are some differences to consider.

General UI Differences
• Resizable windows can be resized from any window edge.

• Spellchecking and grammar checking are now available in
TextField and TextArea controls by setting
AutomaticallyCheckSpelling property to ON in the Inspector.

• PushButtons have a ButtonStyle property than can be used to
change the look of the button.

• The Window.Composite property is ignored since Cocoa draws
all windows as composite.

• Windows in your apps can be dragged around the screen while
code is running.

• Timers, threads and sockets continue to get events when
menus or OS modal dialog boxes are displayed.

• StyledText draws much faster.

Graphics
All drawing using a Canvas must be done from the Paint event or
a method called from it. Cocoa is very restrictive about this. If
you try to access the Graphics object of a Canvas directly, you
will drastically slow down the display performance of your app.

You should also use Canvas.Invalidate to refresh the Canvas
display instead of Canvas.Refresh. The Refresh method tells the
Canvas to redraw itself immediately, which can slow things down
by redrawing too often. Invalidate tells the OS to redraw the
Canvas when it is ready, which is more efficient.

All drawing now takes place in a ‘generic’ colorspace that is
independent of the current output device. This means that colors
will render more similarly between screens and printers.

Threads
Cocoa does not allow any code that is in a thread to modify
anything related to the user interface (which runs on what is

Section 3

OS X Features

35

called the main thread). If your user interface needs to be
updated based on information in a thread, you should instead
have the UI request the information from the thread.

The best way to do this is to use a Timer that periodically updates
the UI based on information that it gets from the thread.

MenuItems
Cocoa does not allow the same MenuItem to be used in two
different places. To work around this, simply use the
MenuItem.Clone method to create a copy of the MenuItem
instead.

Font Display
Cocoa is more restrictive about the font styles that it displays. In
particular, if a font does not have built-in bold or italic variations,
then the font cannot be displayed as bold or italic. The Bold or
Italic properties will have no effect in this case.

To check if the font you wish to use has the variation you need,
use the Font Book application included with OS X.

Keyboard Handling
Unhandled KeyDown event handlers cause a Beep instead of
behaving silently. This is intentional and gives the user feedback
that their action did not do anything. To eliminate the Beep,
simply Return True from the KeyDown event handler.

Additionally, the KeyDown event handler now literally means “a
key was pressed” and does not attempt to interpret the key event

for dead key sequences or input methods. For example, pressing
Option+E and then E again results in two key presses sent to
KeyDown instead of a single key press with the value “é”.

Unsupported Items
• Drawer windows

• ResourceFork class

• Cursors stored in the resource fork

• TextArea.Save method

36

AddressBook
The AddressBook classes are used to access Address Book data
in OS X. The available classes are:

AddressBook, AddressBookAddress, AddressBookContact,
AddressBookData, AddressBookGroup.

The AddressBook class gives you access to the AddressBook.
You can also access the AddressBook using
System.AddressBook:

Dim book As New AddressBook

// or

Dim book As AddressBook
book = System.AddressBook

To get the contacts in the Address Book, use the Contacts
property:

Dim contacts() As AddressBookContact
contacts = book.Contacts

Each contact has properties for the various fields, such as
FirstName, LastName, etc. To add a contact, create it and then
add it using the Add method:

Dim contact As New AddressBookContact
contact.FirstName = "Bob"
contact.LastName = "Roberts"
book.Add(contact)

AddressBookAddress is used to get address information for a
contact. AddressBookData is used to get information such as
email addresses, phone or fax numbers.

AddressBookGroup gives you information about all the groups in
the address book. Use the AddressBook.Groups property to get
an array of groups.

37

KeyChain
The KeyChain is an OS X feature used for storing account
passwords for applications. By taking advantage of the keychain,
your users do not have to type their password if their keychain is
unlocked on their system.

Use the KeyChain class to access OS X Keychains for your
applications. The classes are: KeyChain, KeyChainItem and
KeyChainException.

You should always ask for permission from the user before storing
anything in a keychain.

You use the System module to get a reference to the default
KeyChain. You use the KeyChainItem class to create, update or
find items in the keychain.

If you have more than one keychain, then you can use the
KeyChain constructor to access specific key chains by number.

This code stores a password in the default Keychain:

Dim newItem As KeyChainItem
If System.KeyChainCount > 0 Then
 newItem = New KeyChainItem
 // Indicate the name of the application
 newItem.ServiceName = "MyApplication"

 // Assign a password to the item
 System.KeyChain.AddPassword(newItem,
"SecretPassword")
Else
 Beep
 MsgBox("You don't have a key chain.")
End If

Exception e As KeyChainException
 MsgBox("Keychain error: " + e.Message)

38

And this code retrieves the password:

Dim itemToFind as KeyChainItem
Dim password As String
itemToFind = New KeyChainItem

// Name to find
ItemToFind.ServiceName = "MyApplication"

// Get the password
password =
System.KeyChain.FindPassword(itemToFind)  
MsgBox("Password: " + password)

Exception e As KeyChainException

Adding to a plist
Apps built for OS X consist of an “application bundle”. This
bundle contains the app itself, resources and other components
such as frameworks. It also contains an “Info.plist” file, which is
an XML file containing specific settings that tell OS X about your
application.

For certain apps, you may need to modify the plist to enable
features, such as for UTI and Retina (refer to the following
sections for more information).

To make it easier for you to include your own settings in the
application plist file, you can create your own Info.plist file with
the specific settings you need and drag it into your project.

When your app is built, the settings in your plist file are copied to
the application plist file.

Notes
• Do not add more than one plist file to the project.

• Any items in your plist file that are duplicates of what is created
during the build process are overwritten by the build process.

• Only top-level keys and their entire value are copied. For
example, if a key specifies a dict for a value then the entire dict
is copied. Top-level keys are keys that are immediate children of
PLIST > DICT in the plist XML structure.

39

• The file must have both a plist header and a the extension
“.plist”.

Uniform Type Identifiers (UTI)
Before OS X 10.4, OS X used File Types and Creator Codes to
identify documents created by applications. Since then Apple
has been phasing out Creator Codes and File Types. It now
recommends that you use a Uniform Type Identifier (UTI) to
identify documents.

A UTI is a special text string that identifies both data and
application documents. For example, the UTI for a PNG picture
or file is public.PNG and the UTI for a PDF file is com.adobe.pdf.

If you are working with common file types, you should use the
public UTI for it.

Here are some links for reference:

• http://en.wikipedia.org/wiki/Uniform_Type_Identifier

• http://developer.apple.com/library/mac/#documentation/
Miscellaneous/Reference/UTIRef/Articles/System-
DeclaredUniformTypeIdentifiers.html

Note: UTIs work with both Cocoa and Carbon applications.

Custom UTI
For your own documents, you can create your own UTI. A
custom UTI typically has a “reverse-domain name” format plus an
additional entry for the document type name. So you might have
a UTI such as “com.company.app.doc”. The first part of this UTI

40

http://en.wikipedia.org/wiki/Uniform_Type_Identifier
http://en.wikipedia.org/wiki/Uniform_Type_Identifier

must match the Application Identifier specified in the App
properties (com.company.app in this case).

You create a UTI for your documents using the File Type editor.
The last column in the editor lets you specify the UTI.

When you build your application, the UTI information is included
in the Info.plist file in the application bundle. But in order for this
to work properly, you have to add an additional
“UTExportedTypeDeclaration” section to the plist manually.

Setting up a Custom UTI
These are the steps to create a custom document type that can
be opened by your applications. You need to do these steps after
each build of your application because the Info.plist that you
need to modify is recreated with each build:

1. In the OS X Build Settings:

a. Specify the Bundle Identifier for your application using
reverse domain name format: com.company.app

b. Enter “????” as the Creator Code. This is simply a
placeholder; it is not used.

2. Add a File Types Set to your project and then add a File Type
to it:

a. Enter a name for Display Name and Object Name (such as
MyCustomDocType).

b. Enter “????” for MacType and MacCreator. These are
placeholders and are not used.

c. Specify your extension (without a period).

d. Enter the UTI using your application identifier as the base.
For example, this could be your doc UTI:
com.company.app.doc

e. Choose the icon to use to identify files of this type.

3. Go back in the App properties.

a. Specify your File Type in AcceptFileTypes

4. Build your application.

5. In Finder, go to your application and select “Show Package
Contents” from the contextual menu. Navigate to the
Contents folder and open Info.plist file in a text editor. Add the
following code to the end (before </dict>), replacing the UTI
(com.company.app.doc) and extension (myextension) as

41

appropriate: 

<key>UTExportedTypeDeclarations</key>
 <array>
 <dict>
 <key>UTTypeConformsTo</key>
 <array>
 <string>public.data</string>
 <string>public.item</string>
 </array>
 <key>UTTypeIdentifier</key>
 <string>com.company.app.doc</string>
 <key>UTTypeTagSpecification</key>
 <dict>
 <key>public.filename-extension</key>
 <array>
 <string>myextension</string>
 </array>
 </dict>
 </dict>
 </array>

6. Save Info.plist.

7. Navigate back to the your application in the Finder and Run
your application to register the types

When you use GetSaveFolderItem (or SaveAsDialog), you supply
the FileType to use as the Filter. A custom document created with

the selected file will be associated with your application so that
the specified icon appears and so it can be opened by your
application.

Dim f As Folderitem
f =
GetSaveFolderItem(FileTypes1.CustomType,
"Untitled" +
FileTypes1.CustomType.Extensions)

If f <> Nil Then
 Dim output As BinaryStream
 output = BinaryStream.Create(f, True)
 output.Write("CustomType: Sample Text")
 output.Close
End If

When you go view the saved document in the Finder, you will see
that it has the specified icon. Double-clicking it will launch your
app (if it is not already launched) and call the OpenFile event.

Opening files works by supplying the name of your FileType as
the filter of an open dialog:

Dim f As FolderItem
f = GetOpenFolderItem(FileTypes1.MyType)

42

Migrating to UTIs from MacCreator and MacType
If you have been using the MacCreator and MacType properties
of a FolderItem and specifying them in File Type Sets, then you
need to start using UTIs soon. Apple has deprecated both
MacCreator and MacType.

To switch to using UTIs, you simply need to start using UTIs in
your File Type Sets and updating Info.plist as described earlier.
You can leave the old MacCreator and MacType setting in place
or you can remove them so that you do not get deprecation
warnings when analyzing your projects.

Retina Displays
Retina displays are displays that have extremely high pixel
resolution. When text and UI elements are drawn at the same
size as non-retina displays, these smaller pixels result in
incredibly clear and sharp text and controls. A retina display also
allows for higher resolution pictures to fit in a smaller space on
the screen. Currently, Apple offers retina-type displays with iOS
and Mac products.

With a bit of tweaking, your Cocoa applications can be made
retina-aware so that UI elements and graphics draw at high
quality when run on a retina display.

Note: Only Cocoa applications can be made retina-aware. Apple does not
support retina-aware Carbon applications.

Figure 2.6 A
Custom
Document in
Finder

43

Figure 2.7 Non-Retina Application

This is a two-step process. First, you need to update the Info.plist
in your application bundle to enable retina support.

Second, if your application has graphics, you need to update
them in order for them to appear at retina quality. Generally this
means that you need to provide much larger graphics and then
scale them down to the size you need. Usually you supply a 2x
resolution image and then scale it to fit the available area. OS X
will automatically handle this.

For some graphics, you may find that having separate pre-scaled
graphics for retina and non-retina displays work best. For
example, you might want to swap out a 1x image for non-retina
displays, but use a 2x image with a retina display. To do this, you
need to ask OS X what the scale factor is so that you can
determine which image to use.

Enabling Retina Support
To enable retina support, you need set the
NSHighResolutionCapable key to True in the Info.plist in the
application bundle.

You can do this by creating your own Info.plist file as follows and
dragging it into your project:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>NSHighResolutionCapable</key>
 <true/>
</dict>
</plist>

This enables retina support for the UI elements, such as buttons
and text.

Alternatively, you can use Build Automation to add this key to the
plist file after your application is built.

Note: If you do not have a retina Mac, you can still see how a retina
application looks. One option is to use an iPad with retina display as a extra
display for your Mac (using an app such as AirDisplay). Or you can
download Quartz Debug from Apple (in their Graphics Tools) and use it to
enable HiDPI display modes for your display. Once you do this (select
Window->UI Resolution and "Enable HiDPI display modes), extra display
modes (with greatly reduced resolution) appear in your display preferences.

Figure 2.8 Retina Application

44

For example, on a 1920x1200 display, the best available HiDPI mode is
960x600.

Retina Graphics
If you just add large (2x) graphics to your projects and scale them
down to fit when drawing them, then you automatically get the
high resolution graphics used on a retina display. A non-retina
display uses the scaled version.

But using a scaled version can sometimes lead to non-optimal
results, so Apple recommends having two separate images
included in your application, one for retina displays and one for
non-retina displays.

In order to detect if your application is running on a retina display,
you can check the BackingScaleFactor function in the Cocoa API.
Add this code on a Window:

Function ScalingFactor() As Single
#If TargetCocoa
 Declare Function BackingScaleFactor Lib
"AppKit" Selector "backingScaleFactor"
(target As WindowPtr) As Double
 Return BackingScaleFactor(Self)
#Else
 Return 1
#Endif
End Function

The ScalingFactor is 2 for a Retina MacBook Pro (or other HiDPI
modes) and 1 for anything else, but the values could change
depending on type of retina display. You can use this value to
determine the image size to use or for other scaling you may
need.

Note that this only applies to bitmap graphics that are drawn on
the Graphics instance in the Paint event handler. Vector graphics
scale automatically.

If you are manually double-buffering your graphics, you may find
that they are not automatically drawn in retina quality. Rather
than double-buffering, you should instead draw directly to the
Graphics instance in the Paint event handler. The DoubleBuffer
property of Canvas works with retina displays.

45

Code Signing
With the release of OS X 10.8 Mountain Lion in 2012, the new
GateKeeper functionality is now in effect. This means that new
apps that are downloaded or copied to a Mac with OS X 10.8 or
newer, but that are not digitally signed using your Apple
Developer Certificate, display this error when run:

This error can be overridden in System Preferences, by changing
the "Allow applications downloaded from" setting to
"Anywhere" (Figure 2.10).

In addition, you can right-click on the app and click Open in the
menu to tell OS X, "I'd really like to run this app, thank you very
much."

Note that this only matters for new apps that you transfer to a
Mac running OS X 10.8 or later. You'll be able to run the apps
you create on your developer machine without this warning. You'll
only run into this warning when you copy the app to another Mac,

either by making it available for download or by copying it via a
USB stick, the network or anything else.

So even though you don't technically need to sign your OS X
applications in order to avoid this warning, you are probably
going to want to. The truth is that most people will just leave the
setting at the default and will not know that when they get
the warning message that they can right-click on the app to open
it. You could try explaining all this to them, but either way it is
going to be a hassle for your users. Odds are they just won't
bother with your app.

To sign your apps you need a developer certificate from Apple.
 And the only way to get a Developer Certificate is to sign up for

Figure 2.9 OS X Error for Unsigned Applications

Figure 2.10 Security & Privacy System
Preferences

46

the Mac Developer Program, which costs $100 a year. However,
the certificate you get is good for 5 years, so it looks like you do
not need to pay the $100 fee each year unless you also want to
distribute apps in the Mac App Store.

You can find out more about the Mac Developer Program at the
Mac Dev Center:

https://developer.apple.com/devcenter/mac

Once you have joined, you can create your own certificates using
the Developer Certificate Utility at the Mac Dev Center. The steps
are a bit involved, but essentially you will request a Developer ID
certificate using the Developer Certificate Utility.

The Utility then walks you through the process of starting
KeyChain Access and downloading and uploading files until you
have the certificate installed. It's a little tedious, but
relatively straightforward.

That's the hard part. With the certificate installed, you can now
use it to code sign any of your applications. You do this using the
Terminal command codesign (pronounced "code sign").

But before you begin, make sure you have the Intermediate
Developer ID certificate installed. Go to this page:

http://www.apple.com/certificateauthority/

and download the Developer ID certificate. Double-click it to
install it into Keychain Access.

Now you are ready to code sign your application. Navigate to its
folder using Terminal. There you can enter this command to code
sign your application and all its libraries. Obviously you want to
replace "YourXojo.app" with the name of your application and
"Developer ID Application: YourName" with the name of your
signing certificate specified in Keychain Access.

Figure 2.11 Developer Certificate
Utility at Mac Dev Center

47

https://developer.apple.com/devcenter/mac
https://developer.apple.com/devcenter/mac
http://www.apple.com/certificateauthority/
http://www.apple.com/certificateauthority/

codesign -f -s "Developer ID Application:
YourName" "YourXojoApp.app"

That's it. Now you can compress your app and transfer it
to another computer.

AppleScripts
AppleScript is the OS X system-level scripting language than can
be used to control applications. You can create AppleScripts
using the AppleScript Editor.

In order for Xojo to run an
AppleScript, the script must
be saved as a “compiled”
script. You can do this using
the Script Editor and
selecting Compile on the
toolbar and saving the script.

Now you can use the
AppleScript with Xojo by
dragging the compiled script
onto the Navigator. The script
appears in the Navigator with a script icon next to it. This item is
added to Xojo as an “external” item and includes it with the
application when you build.

To run the AppleScript, just call it
by the name it has in the
Navigator.

Here is a simple script that you
can compile and drag into your

48

Figure 2.13 AppleScripts
in Navigator

Figure 2.12 AppleScript
Editor

project to launch iTunes:

tell application "iTunes"
 launch
end tell

Passing Parameters
To pass parameters, add an “on run” handler to contain your
script and specify the parameters using curly brackets:

on run {value1, value2}
 // your script code goes here
end run

Xojo Integers passed to AppleScripts are sent as Integer values
and are treated as Integers by AppleScript. All other Xojo types
(including other numeric types such as Int8 and Double) are sent
as Strings and are treated as Strings by AppleScript.

Returning Values
You can also return values from an AppleScript back to your Xojo
code by using the return command in the script. This example
adds two values and returns the result:

on run {value1, value2}
 return value1 + value2
end run

AppleScript does not use types like Xojo does. All values are
returned as Strings to Xojo.

Calling AppleScripts from Xojo
AppleScripts are called just like built-in global methods and
functions. You use the name it has in the Navigator. If it has
parameters, you supply them after the name as you would any
other method that has parameters.

Scripts that return values can be assigned to a Xojo variable. This
command calls the above script that adds two values:

Dim sum As String
sum = Add(5, 10)

Note: If there is an error in your AppleScript, it is logged to the Messages
pane at run-time.

49

AppleEvents
AppleEvents are a way for OS X applications to communicate
with one another. An AppleEvent is a self-contained block of data
which consists of a sequence of key-type-value data (called an
AppleEvent Descriptor, or AEDesc). Each descriptor can contain
other descriptors as an ordered array or as a mixture of keyed
data.

The AppleEvent as a whole is both itself and the AppleEvent
Descriptor.

Refer to the Language Reference for specific details on how to
use AppleEvents.

50

ActiveX, COM and OLE
OLE (Object Linking and Embedding) and COM (Component
Object Model) are ways to communicate with Windows objects
in your applications. ActiveX describes controls that utilize COM
or OLE.

You use the OLEObject, OLEContainer, OLEParameter and
OLEException classes to access these Windows features.

OLEObject
OLEObject can be used to send messages to other Windows
applications that support OLE, such as Internet Explorer.

Use the Value method to get and set values of the OLE object.
Use the Invoke method to call methods (with or without
arguments) on the OLE object.

This code creates a connection to Internet Explorer and then tells
it to display Wikipedia:

Dim obj As OLEObject
Dim v As Variant
Dim params(1) As Variant
obj = New
OLEObject("InternetExplorer.Application",
True)
obj.Value("Visible") = True
params(1) = "http://www.wikipedia.org"
v = obj.Invoke("Navigate", params)
Exception e As OLEException
 MsgBox(e.message)

OLEContainer
OLEContainer is used to embed ActiveX controls into your
applications.

Section 4

Windows Features

51

To use an OLEContainer, you drag it from the Library onto a
Window. In the ProgramID property of the Inspector, you specify
the program ID for the control.

You can access the properties and methods of the ActiveX by
using the Content property, which returns an OLEObject where
you can use the Value and Invoke methods.

This code in a Button, displays a PDF in an Adobe Reader
ActiveX OLEContainer that has been added to a window:

PDFContainer.Content.Value("Src") =
"C:\Document.pdf"

Note: Depending on the version of Adobe Reader, you may need to click on
the container before the PDF is displayed.

To print the PDF in the OLEContainer, you can call the
“printWithDialog” method of the Adobe Reader ActiveX control:

PDFContainer.Content.Invoke("printWithDialog")

Using Insert ActiveX Component
You can also directly add ActiveX controls and automatable/OLE
objects by selecting Insert -> ActiveX Component from the menu.
This displays a window with two tabs: Controls and References.
The Controls tab lists the ActiveX controls that you can add to a

window. The References tab lists the automatable COM objects
are are not controls, like the iTunes Library, Microsoft Word, etc.

When you select an item and click OK, a module (containing
classes for the component) is added to your project for you to
use. Refer to the docs for the component to understand how to
use its classes, methods and properties.

52

Figure 2.14 Insert COM Components Window

Office Automation
Microsoft makes it possible to automate Word, Excel and
PowerPoint, which you can do using the three classes:
WordApplication, ExcelApplication and PowerPointApplication.

These classes expose the Microsoft Object Model for each of the
Office Applications. The Object Model for Word, Excel and
PowerPoint are each immense, but they are fully documented by
Microsoft.

• Word Object Model Reference: http://msdn.microsoft.com/en-
us/library/ff837519

• Excel Object Model Reference: http://msdn.microsoft.com/en-
us/library/ff194068

• PowerPoint Object Model Reference: http://
msdn.microsoft.com/en-us/library/ff743835

By way of example, this code takes text entered into a TextArea
and displays it in a Microsoft Word document:

Dim wordDoc As New WordApplication
wordDoc.Visible = True
Dim doc As WordDocument
doc = wordDoc.Documents.Add
doc.Range.Text = TextArea1.Text

Note: WordDocument is a class in the Word Object Model.

53

http://msdn.microsoft.com/en-us/library/ff837519
http://msdn.microsoft.com/en-us/library/ff837519
http://msdn.microsoft.com/en-us/library/ff837519
http://msdn.microsoft.com/en-us/library/ff837519
http://msdn.microsoft.com/en-us/library/ff194068
http://msdn.microsoft.com/en-us/library/ff194068
http://msdn.microsoft.com/en-us/library/ff194068
http://msdn.microsoft.com/en-us/library/ff194068
http://msdn.microsoft.com/en-us/library/ff743835
http://msdn.microsoft.com/en-us/library/ff743835
http://msdn.microsoft.com/en-us/library/ff743835
http://msdn.microsoft.com/en-us/library/ff743835

Registry
The Registry is a system-wide Windows feature for storing
application preferences and settings.

The RegistryItem class is used to find and add information to the
Registry.

This code gets the location for the “Program Files” directory from
the registry:

Dim r As New
RegistryItem("HKEY_LOCAL_MACHINE\Software\Micro

soft\Windows\CurrentVersion", False)  
 
If r <> Nil Then 
 MsgBox(r.Value("ProgramFilesDir"))  
End If

54

You localize your applications using dynamic constants, which is
a special form of a constant that is added to a project item such
as a module, window, web
page or class. Only a
constant of type String can
be marked as dynamic,
allowing it to be more easily
used for localization.

To identify a constant as
dynamic, create a string constant and then check the dynamic
check box. A recommended approach is to create a separate
module for your localizable constants, but you can put these
constants anywhere.

You can enter different localized values for the dynamic constant
based on platform and language. Do this using the Constant
Editor.

Use the “+” and “-” buttons to add or remove a specific
localization. You can choose the Platform and the Language for
which to specify a value.

When the user runs an app, the language specified on their
system is used to look up the localized value of the constant to

use.

Constants created in this
manner can then be used as
the Text or Caption of controls
so that the control displays
the appropriate localized
value. To use a dynamic

constant as the Text or Caption, you prefix it with the “#”
character when entering it in the appropriate property. If you
have a module called LocalizedStrings and have a protected
constant called kWelcomeMessage, then you add it to a Label as
the Text property like this:

#LocalizedStrings.kWelcomeMessage

Of course you can also refer to the dynamic constant in your
code just as you would any other constant.

Section 5

Localization

55

Figure 2.15 A Dynamic Constant

But with a dynamic constant, you can also specify which
localization you want to use. You do this by supplying the
language code (usually two-character) and optionally the region
code as a parameter to the constant. For example, if you had a
constant called kHello that had localizations for both French
(“Bonjour”) and English (“Hello”), you could force the French
version to be displayed by doing this:

Dim s As String
s = kHello("fr") // s = "Bonjour"
s = kHello("en") // s = "Hello"
s = kHello("en_UK") // s = "Welcome"

Building a Localized App
On the Shared Build Settings, there is a Language property in the
Build section of the Inspector. This property determines the
language that is used by any
constants that have “Default”
as the language.

It is important that you
specify a specific language in
this build setting. If you also
leave this setting at
“Default”, you will run into

confusion if the project file is shared with people that do not have
the same system language as you.

For example, if you leave both the constant language and build
language as “Default” then “Default” becomes “English” for users
that build with an English system and becomes “French” for users
that build with a French system.

To prevent this confusion, always at least choose the correct
language in the Build setting. Alternatively, don’t use “Default” for
your constants and instead always specify the exact language for
each constant.

56

Figure 2.16 Application
Language Setting

Lingua
If you have a lot of text to localize, it can get tedious
to enter all the values using the Constant Editor. The
Lingua application is used to simplify the localization
process. With Lingua you can localize your
application strings outside of the project by using
the dynamic constants you have already created.

When all of the strings in your project have been
defined as dynamic constants, choose File ↠ Export Localizable

Values. A dialog box appears, asking you to select the
language you want to localize to. Select the language
you are localizing to and click Export. (Also make sure
that the Language in the Build Settings is set to either
Default or any other language that you want to use as
the originating language in the export.)

When you click Export, a file is created that can be
opened by Lingua.

Launch Lingua and then open the file you exported. The main
Lingua window opens, showing a list of all the dynamic strings in
your application. The values are grayed out when there is no
localized text yet. If there are any different values specific to
Windows, Linux, or OS X, there will be an icon to the far right of
the string in the list. Like the strings, the icons are grayed out if
the value hasn't been localized yet.

To localize a string, select it in the list. The original value is
displayed in its entirety in the upper right pane, and in you can
type the translated text
in the lower right panel.

To add a value specific
to a platform, expand
the string in the list, and
select the individual
platform to edit it.

Figure 2.19 Export Localized
Values Dialog

Figure 2.18 Lingua
Welcome Screen

57

Figure 2.17 Lingua Main Window

To test the strings, choose File ↠ Export to Application. Lingua
presents an open-file dialog box. Select the target application and
click Open. When the import is complete, switch back to Xojo
and debug the application normally.

When finished localizing, you can save the file from within Lingua
and then import the strings file back into your project by dragging
it into a project or choosing File ↠ Import.

Changing the Language on Windows
To use a different language on Windows, you need to change the
Language setting on the Format tab. Changing the Language on
the Keyboard and Languages tab will not affect your applications.

Figure 2.20 Changing the
Language for an Application

58

Localizing Web Applications
Web applications are also localized using dynamic constants, but
the language that is displayed is determined by the language
setting in the browser being used to access the web application.

Note: More specifically, it is using the constant value that is most
appropriate for the HTTP header language setting of the current session.

There are also several properties of the Session that are helpful
for localization:

• LanguageCode

• LanguageRightToLeft

In addition, there are several dynamic constants that are used for
system messages that you can localize:

• ErrorDialogCancel

• ErrorDialogMessage

• ErrorDialogQuestion

• ErrorDialogSubmit

• ErrorThankYou

• ErrorThankYouMessage

• NoJavascriptMessage

• NoJavascriptInstructions
59

Chapter 3

Web
Development

Web development can be a bit different than
desktop development. This chapter covers ways to
optimize your web application and suggestions for
porting desktop applications to web applications.

CONTENTS

3. Web Development

3.1. Optimizing web Applications

3.2. Porting Desktop Applications

3.3. Mobile Support

Unlike a desktop application that is on the same computer as the
user, a Web app could be thousands of miles away from the user.
Also, different users are connecting with varying degrees of
speed in between. Some may truly be using a state-of-the-art
broadband service, while others are making do with less than an
optimal mobile connection. Therefore it is important that you take
into consideration how to build your app to optimize for
performance on the internet. Here are a few techniques you can
use to optimize your web application for performance.

Graphics
Use PNG
Although pictures in JPEG format can be smaller than those in
PNG format, JPEG tends to be fuzzy for text and smooth color,
does not support transparency and has possible licensing issues.

You can create a WebPicture in PNG format by passing
Picture.PNGFormat to the second parameter of the WebPicture
constructor. Here’s an example:

WebImageView.Picture = New
WebPicture(source, Picture.FormatPNG)

Store Pictures in Properties
Pictures stored in properties of a web application are cached by
the web browser so they are sent only once from the app to the
browser. As a result, storing pictures as App properties reduces
the amount of data that is transmitted between the app and the

Section 1

Optimizing Web Applications

61

browser. Storing your pictures in Modules will also allow the
browser to cache them.

Use Rectangles
Rather than creating pictures, use Rectangles when possible.
They can be dramatically altered using styles. For example, by
setting the corner radii to 50, you can turn a rectangle into a
circle. Rectangles are very small in terms of the amount of data
that needs to be sent from your app to the browser.

Use the Style Editor to Create Styles
Styles are small (in terms of the amount of data sent from the app
to the browser) so they are a very efficient way to make visual
changes.

Latency
Remove Unused Event Handlers
Event handlers cause communication between the browser and
the web app on the server even if they have no code in them. For
this reason, remove any event handlers that do not have code in
them.

Send Large Objects in the Background
If you have large objects you know you will likely need, you can
use a Timer control or use Push to assign them to properties of
the page while the user is busy doing something else. For
example, Google Maps sends in the background map segments
that are around the area you are viewing in case you scroll the
map. You can use this same technique in your applications.

Be Careful with Query Results
If youʼre accessing a database and loading the results into a
ListBox, be careful with large numbers of records. The more
records you load, the longer it will take for that information to be
transmitted to the browser. And there’s only so much information
a user can realistically view anyway. Avoid filling ListBoxes with
huge numbers of rows.

Be Careful with Key and MouseEvents
Every event causes data to be transferred between the browser
and your app. That means you want to avoid using frequent
events such as KeyUp, KeyDown and MouseMove if possible. If

62

your app is running on the local network, these events will
probably be fine but if the user is accessing it over the Internet
and you have a lot of simultaneous users, it may cause too much
of a lag to work responsively. Test and experiment!

Framework Usage
Don’t Use Implicit Page Names
Store a reference to a page in a variable or property rather than
using the name of the page as an implicit reference. Implicit
references have to be looked up by the framework which takes
longer than simply accessing a reference that is stored
somewhere. For example, rather than doing this:

WebPage1.Show

Do this:

Dim page As WebPage1
page.Show

And then continue to access your page via the variable or
property (“page” in this case).

Use InsertText/AppendText when Updating Text Areas
Each time you update the Text property of a Text Area, all the text
is sent from your app to the browser. If you just need to append
text or insert some text, use the AppendText and InsertText
methods instead. These send only the text being inserted or
appended to the browser.

Deployment and Development
Use CGI Rather than Standalone
You can build your app as a CGI or standalone HTTP Server.
Tests suggest that a standalone HTTP Server app should handle
a few hundred users without a problem. However, if you need
more performance, use CGI instead.

Memory Leaks
Memory leaks occur when objects are created but never
destroyed. As more and more objects are created and not
destroyed, the amount of memory used increases. Eventually, the
app will crash because the machine runs out of available memory.
In a desktop app this may not be a big deal because the user will
eventually quit the app and that will clear memory. However, in a
web app it is more serious because the web app may be running
for days, months or even longer. If your app is running as a CGI,
once the number of users (sessions) accessing the app gets to
zero, the app will quit and this will release any memory that app is

63

using. However, your app may never reach the point where there
are no users so you need to be careful about not leaking memory.

Local Laws
Web applications are sometimes affected by the local laws in your
area. For example, the European Union recently passed a
directive requiring web sites to ask visitors for their consent
before they can install most cookies.

64

To create a web version of an existing desktop application, there
are several things to consider.

Obviously, you cannot use your project exactly as it is, but with
an appropriate design, you may find that you can re-use (or even
share) a significant amount of code.

Project Type
First, desktop applications and web applications have different
project types. You cannot change the type of a project, so you
will need to create a new web application project in order to
create a web application.

User Interface
The user interface for a web application is completely different
than the user interface for a desktop application. Not all of the
desktop controls have equivalent web controls (Tab Panel, for
example) and not all the features of the desktop controls are
available in web controls (such as List Box). There are also web
controls that do not have an equivalent desktop control (for
example, Map Viewer).

In addition, web applications do not have a concept of a Menu
Bar, which is something that almost every desktop application
uses.

You are going to need to completely re-implement your existing
desktop user interface using web application controls. And while
you are doing this, you should also consider redesigning things
to work better in a web application.

Web Pages Replace Windows
Generally speaking, each window in a desktop application can
be designed as a web page in a web application. You use the

Section 2

Porting Desktop Applications

65

Show method to display different pages based on user actions,
similar to how you might show additional windows.

Keep in mind that a web application can only show a single page
at one time. If your desktop application relied on having multiple
visible windows, then you will need to rethink that design.

Dialogs
Dialogs in desktop applications can use the MessageDialog class
or be modal windows. In web applications, those options are not
available.

To create a dialog in a web application, you instead add a Web
Dialog to your project and add your layout to it. Then you add
this web dialog to the page or pages on which it should appear
and call it using Show where appropriate.

When the dialog is closed, its Dismissed event handler is called
where you can determine what action to take.

Note: Web dialogs are not modal. After you call Show to display the dialog,
the rest of the code in your method runs.

Shown Event Handler
In desktop applications, you often use the Open event handler to
do initial set up of your controls or windows. In web applications,
you should instead use the Shown event handler.

Styles
In desktop applications, you can modify the style of a control by
changing properties on it for color, font, etc. With web
applications, you instead create a Style that has the settings you
want and you apply the Style to the control.

This has the benefit of allowing you to use the same style for
controls throughout your web application. If you then need to
change something in the style (say a font size), you can do that in
one place (the Style itself) and the change will take effect
anywhere that the style is used in the web application.

66

Multiple Users
One fundamental difference between desktop and web
applications is that desktop applications are designed to be used
by a single user at a time while web applications are designed to
be used by many users at a time.

Sessions
Having to deal with multiple users means you may need to
manage global data differently. In desktop applications,
properties and methods on App are global to the entire
application, which can often be useful.

In a web application, App is also global to the entire application,
which means it is globally available to all users of the web
application.

So you do not want to store global information that is specific to
the current user in App, such as the UserName that was used to
log in. Instead, web applications have a concept called a
Session. Each user that connects to your web application gets
its own session in the form of a Session object. Use the Session
object to manage global information just for the user. For
example, saving the UserName to a property on the Session
means that it is only visible to the one user.

Databases
Similarly, with databases, desktop applications often keep a
global reference to the database in App. With a web application,

you should instead use Session for the database reference. Each
user that connects to the web application should have its own
connection to the database so that transactions work properly
and so that you can isolate database access to prevent other
users’ data from being visible.

For desktop applications, if you want to allow multiple users to
access a database (using multiple installations of the desktop
app), then you usually want to use a database server.

With web applications, you may find that you do not always need
a database server. Because your web application is itself running
as a server, SQLite is often more than sufficient for handle light to
medium web application loads.

Cookies
Most applications need to save preferences or settings of some
kind. With web applications, you can easily do this using
Cookies, a web technology that provides a way for a web
browser to save settings that can be requested by web
applications.

Session.Cookie.Set("UserName") = UserNameField.Text

67

Log In
Mentioned briefly above was the concept of a UserName used to
log in. Most web applications require a user to log in so that the
web application knows what data it should be displaying. This is
often the first page of your web application. This log in
information can be saved in Session and stored in Cookies for
easy access and retrieval.

This code (in the Shown event handler for the page) could fetch
the saved Cookie and use it to pre-fill the UserName field:

UserNameField.Text = Session.Cookies.Value("UserName")

Code Sharing
If you tend to keep most of your code in your user interface
objects, then you will not be able to share your code between
desktop and web projects.

But if you instead separate your code out into classes that are
called by your user interface objects, then you can start to share
code between web and desktop projects.

This is sometimes referred to as Model-View-Controller design.
The View is the user interface, either web or desktop. This cannot
be shared. The Model is your data. This is shareable. The
Controller is the interface between the Model and the View.

Using this design in conjunction with conditional compilation
allows you to create shared code that works for both desktop and
web applications.

For details on how to set up projects that share code, refer to
Chapter 5: Code Management, Section 1: Sharing Code Between
Projects.

Navigator Example
This simple example uses a class to open a new web page or a
new window, depending on the type of app.

Create a new web or desktop project and add a new class, called
Navigator. In it, add a method called ShowScreen2 with this
code:

68

#If TargetWeb Then
 WebPage2.Show
#ElseIf TargetDesktop Then
 Window2.Show
#Endif

This code displays either WebPage2 or Window2 depending on
the type of application.

In Window1, add a Button and put this code in its Action event
handler:

Dim n As New Navigator
n.ShowScreen2

Now add a new Window (it should default to Window2 as the
name). You should give this window a title that says “Window 2”
so you know when it has opened.

Run the project and click the button on the default window.
Window2 opens.

Now create a new web project. Add a Button to WebPage1 and
add the same code to its Action event handler:

Dim n As New Navigator
n.ShowScreen2

Copy the Navigator class from the desktop project to the web
project.

Lastly, add a second web page, called WebPage2. Give it a title
so you know when it displays.

Run the project and click the button on the default web page.
Web Page 2 appears.

You have now created a (very simple) class that can be used in
either a desktop or web application. This technique can apply to
just about anything. Code that refers to web-specific objects or
features should be included in “#If TargetWeb” and code that is
for desktop apps should use “#If TargetDesktop”.

Although you are using the same Navigator class, you are not
actually sharing the exact same class between the two projects.
Changes made to the Navigator in one project do no affect it in
the other project. If you want to share the exact same class so
that a change in one project is reflected in another, then you need
to use an External Project Item as described in Chapter 5.

69

Web applications can be a great way to provide mobile
applications for you users and customers.

General Mobile Support
Use the Session.Platform property to determine the platform that
your web application is running on. With this information, you
can choose to display a page that is specifically designed for the
smaller screen of an iPhone, for example. This code in the
Session.Open event handler displays the appropriate page for
the device being used:

Select Case Session.Platform  
Case WebSession.PlatformType.iPhone
 iPhonePage.Show
Case WebSession.PlatformType.AndroidPhone
 AndroidPhonePage.Show
Case Else
 MainPage.Show // All other devices
End Select

Pages are resized to the screen size or the page MinimumHeight
and MinimumWidth. If either minimum value is larger than the
actual screen size, the user is able to scroll the web application.

If the minimum is smaller than the actual screen size, then the
entire web page is visible.

The Session.OrientationChanged event allows you to know when
the user has changed the device orientation. You can use this to
display a different page if appropriate.

Zooming is locked to 100%, which prevents the page size from
changing allowing it to look best on mobile devices.

iOS and Android
With iOS and Android, the user can “bookmark” a web page to
the home screen. When the user does this with a web
application, the icon you have specified for the loading screen is
used as the icon on the home page.

Section 3

Mobile Support

70

Chapter 4

Migrating
from Other
Tools
Are you coming to Xojo from another development
tool? Here are some tips.

CONTENTS

4. Migrating from Other Tools

4.1. Visual Basic

4.2. Microsoft Access

4.3. FileMaker

4.4. Visual FoxPro

Visual Basic (6 or earlier) and Visual Basic .NET use a language
very similar to the Xojo language. You will notice that many of
the commands are nearly the same, but there are differences as
well.

Similarities to Visual
Basic
Visual Basic 6 (VB6) is no longer
supported by Microsoft, which
recommends you instead migrate
to Visual Basic .NET (VB.NET).
But Visual Basic .NET is large and
complex, not to mention not
cross-platform. Xojo is usually a
better choice for Visual Basic 6
applications because it has the
simplicity of VB6, but is a fully
object-oriented language like
VB.NET.

To start with, the language syntax
of VB is very similar to Xojo.

You’ll see familiar syntax for
If..Then..Else, For..Next,
While..Wend, Dim and many
other commands. Someone
who has used either VB6 or
VB.NET will have no trouble
understanding the Xojo
language.

Data Types
Although Xojo data types are
not always named exactly the
same as VB6 data types, all
the equivalent types are there.
For example, Integer is
equivalent to a VB6 Long.

Controls
The default UI controls
included with VB are, for the
most part, also included with
Xojo.

Section 1

Visual Basic

72

Figure 4.1 VB and Xojo
Data Types

VB Data
Type

Xojo Data
Type

Boolean Boolean

Byte Byte

Currency Currency

Date Date class

Double Double

Integer Short

Long Integer

Object Object

Single Single

Variant Variant

Figure 4.2 VB and Xojo
Controls

VB Control Xojo Control

PictureBox Canvas

Label Label

TextBox TextField

Frame GroupBox

CommandButton PushButton,
BevelButton

CheckBox CheckBox

ComboBox ComboBox

Listbox ListBox,
PopupMenu

HScrollBar,
VScrollBar ScrollBar

Timer Timer

Shape Oval,
Rectangle

WebBrowser HTMLViewer

TreeView ListBox

Toolbar Toolbar

MediaPlayer MoviePlayer

But Xojo also has several controls that are not included by default
with VB. Of course, VB had plenty of additional, but Windows-
specific, controls that could be added to its default setup.

Differences from Visual Basic
A big difference is that Xojo cannot create DLLs, ActiveX controls
or any kind of shared libraries. Since these are all Windows-
specific technologies, they are not useful for cross-platform
applications.

Xojo can access DLLs and many ActiveX controls, but using them
means your application will only run on Windows and cannot be
cross-platform.

Of course, Xojo can easily create web applications, something
VB6 cannot do.

File I/O
File input and output in VB6 uses direct, path-based access to
files. This is not something that works for cross-platform
applications, so Xojo consolidates all file processing into a few
classes: FolderItem, TextInputStream, TextOutputStream and
BinaryStream.

Data Types
Xojo has a strongly typed programming language. VB6 (and older
versions) would allow you to use a variable that had not been
previously declared. It would infer a type based on a special
character in its name (name$ would be a String, for instance).

Before trying to migrate VB6 code, you should use the OPTION
EXPLICIT command to make sure that all your variables are
declared.

Visual Basic Migration Assistant
Visual Basic Migration Assistant (VBMA) is a free tool that can
help you to begin migrating VB6 and VB.NET code to Xojo.

VBMA creates a Xojo project from the contents of your VB
project. Specifically, it moves over forms, modules, classes and
their code.

What it Does
VBMA takes the specified VB project and creates a Xojo XML
project file containing the forms, modules, classes and source
code from the VB project. The purpose of this tool is to get your
project into Xojo so that you can work on it from a single place.
The tool does not create a working Xojo application from VB
code.

Since VB forms do not exactly match Xojo windows, VBMA maps
VB controls to their equivalent Xojo controls as it migrates the
project.

Source code is not converted or modified in any way. The code
is migrated to the Xojo project, but is completely commented out
and is primarily for reference.

73

For Best Results
VB 5 and 6 and VB.NET are supported. If you are using an older

version of VB, upgrade your code to a later version before
attempting to use VBMA.

Review and try to reduce your usage of 3rd party VB controls. Not
only are they not cross-platform, but not all of them work with
Xojo.

Converting a Project
When you launch VBMA, you are presented with a wizard that
walks you through the process. The first screen is for Project
Selection.

Select the “Import Project” button and choose your VB project
file. Alternatively, you can drag individual files to the List or you
can use the “Add Item” button to select individual files.

Specify the encoding as necessary. This is the encoding/
language that was used to create the VB project. This is
especially important if your VB project uses any non-English
filenames.

Click the Next button to go to the Control Mapping screen.

Figure 4.3 Visual Basic Migration Assistant
Project Selection

74

Figure 4.4 VBMA Control Mapping

VBMA analyzes the VB project and displays the type of controls
that it is using. In the Mapping screen, you can select the Xojo
control to use for each VB control.

You can choose to save the Control Map to a file so that you can
use it again for other projects.

Click the Migrate button to migrate the VB project to a Xojo XML
project file. You will be prompted for a location to save the file.

When VBMA is finished it will attempt to have Xojo open the
project file.

With your VB project in Xojo, you can now begin work on creating
a Xojo version.

75

Microsoft Access is database software that runs on Windows
and is part of specific versions of Office. It is often use to create
specialized in-house database applications. But Access cannot
create real, stand-alone applications. If you have an access
application and are running into its limitations, Xojo is a great
choice to take your application to the next level.

Similarities
Access has a form designer, database designer and a
programming language (VBA: Visual Basic for Applications).

Xojo has all these components as well, but expands on each of
them. It has a form designer with many more controls than
Access provides and allows you to layout your user interface in
any way you want. It uses SQLite as its built-in database and
has a database designer for designing your tables. And of
course, Xojo has a much more robust programming language.

Migrating
Migrating an Access application is typically a three-step process
where you migrate the database itself, the forms that are used to
manipulate the data and the source code.

Database
When migrating a Microsoft Access application, you first need to
consider the database. If you are using the Access “Jet”
database engine, you will most likely want to migrate it to
another database engine. Although you can connect to a Jet
database using ODBC or ADO on Windows, Jet is not a cross-
platform database format. OS X can only connect to a Jet
database using ODBC in read-only mode.

Your best bet in this case is to use SQLite, which is much faster
than the Access Jet database and is fully cross platform. You
can easily migrate your database tables and data from an Access
database to SQLite. This can be done using ODBC, ADO or a
variety of 3rd party products.

If your Access database is connecting to another database as its
data source, then you can use the ODBC plugin and an ODBC
driver to connect. Or you can use the built-in plugins for
connecting to PostgreSQL, MySQL, Oracle and Microsoft SQL
Server.

Section 2

Microsoft Access

76

Forms
Your Access forms are likely used to edit data in tables. You can
recreate these forms as Windows or web pages in your Xojo
application.

For desktop applications, you may find the DataControl control to
be a simple way to map your fields to database tables and
columns without having to write a lot of code.

Source Code
Access is programmed using the Visual Basic for Applications
language which is quite similar to the Xojo programming
language.

You will have to rewrite your code, but at the same time will find
the Xojo programming language to be familiar in its syntax and
commands.

77

FileMaker is a database tool that runs on both Windows and
OS X. It is often called the OS X version of Access.

Much like with Access, FileMaker has its own database engine,
form designer and scripting language.

Migrating
Migrating a FileMaker application is typically a three-step
process where you migrate the database itself, the forms that are
used to manipulate the data and the scripting code.

Database
When migrating a FileMaker application, you first need to
consider the database. Although you can connect to a FileMaker
database using ODBC, you will need to get the appropriate
drivers.

Instead you can migrate your data to SQLite (a fast, cross-
platform database) by first converting the FileMaker data to XML.

Forms
Your FileMaker forms are likely used to edit data in tables. You
can recreate these forms as Windows (or web pages) in your

Xojo application. In most cases you will use Label, TextField and
TextArea to recreate form fields, but there are lots of other
available controls as well.

For desktop applications, you may find the DataControl control
to be a simple way to map your fields to database tables and
columns without having to write a lot of code.

Either way, you would likely have your application connect to the
database at startup and then populate the form with the first
record. Next and Previous buttons can be added to fetch and
display the appropriate information from the database.

Section 3

FileMaker

78

Source Code
FileMaker is programmed using a scripting language that is
somewhat similar to the Xojo programming language.

You will have to rewrite your code, but at the same time will find
the Xojo programming language to be familiar.

Special thanks to Hal Gumbert of Camp Software for assistance with the
information in this section.

79

Figure 4.5 Some FileMaker Commands and their
Xojo Equivalents

FileMaker Command Xojo Command

Exit Script Return

Set Error Capture Try..Catch..End Try

Set Variable Dim

If..End if If..End If

Loop..End Loop Loop..Until

Go to Field TextField.SetFocus

Field assignment TextField.Text = "value"

Visual FoxPro (VFP) is a Windows programming tool made by
Microsoft. It has been
given its end-of-life and
is no longer supported
by Microsoft.

VFP has its own tightly
integrated database
engine, a form designer
and a programming
language.

Migrating
Migrating an Visual FoxPro application is typically a three-step
process where you migrate the database itself, the forms that are
used to manipulate the data and the scripting code.

Database
When migrating a VFP application, you first need to consider the
database. You can connect to a VFP database using ODBC on
Windows, but it makes more sense to migrate your data to
SQLite, which is a fast, cross-platform database.

Forms
Your VFP forms are likely used to edit data in tables. You can
recreate these forms as Windows (or web pages) using drag and
drop just as you can with VFP.

For desktop applications, you may find the DataControl control
to be a simple way to map your fields to database tables and
columns without having to write a lot of code.

Source Code
VFP is programmed using a proprietary language that is quite
similar to the Xojo programming language.

You will have to rewrite your code, but at the same time will find
the Xojo programming language to be familiar.

Cully Technologies makes a product that can help you migrate
your Visual Fox Pro projects to Xojo:

http://cully.biz/

Section 4

Visual FoxPro

80

Figure 4.6 Visual Fox Pro

http://cully.biz
http://cully.biz

Language Syntax
The syntax of the two languages is different, but the concepts are
quite similar. For example, to create an instance of a new class in
VFP, you might use this code:

LOCAL oMyClass
oMyClass = CREATEOBJECT("MyClass")

In Xojo you would write:

Dim oMyClass As New MyClass

The VFP MessageBox command is similar. Instead of writing this:

MessageBox("Hello, World!")

You would write this:

MsgBox("Hello, World!")

Other VFP commands and their Xojo equivalents are listed in the
accompanying figure.

Special thanks to Kevin Cully of Cully Technologies for assistance with the
information in this section.

81

Figure 4.7 Some VFP Commands and their Xojo
Equivalents

VFP Command Xojo Command

ON ERROR Exception

TRY..CATCH..END TRY Try..Catch..End Try

DO WHILE..ENDDO While..Wend

FOR EACH..ENDFOR For Each..Next

FOR..ENDFOR For..Next

IF..ENDIF If..End If

LOOP Continue

DECLARE Dim

DO CASE..ENDCASE Select Case..End Select

Chapter 5

Code
Management

This chapter covers two important concepts for
managing your code: code sharing and source
control.

CONTENTS

5. Code Management

5.1. Sharing Code Between Projects

5.2. Using Source Control

Normally your projects are independent of each other. But there
are certainly times when you may have common project items
that you want to share amongst multiple projects.

Copy and Paste with a Master Project
The simplest way to do this is with copy and paste. You can
select the project items in the Navigator, copy them and then
paste them into another project. This creates two separate
copies of the project items for each project.

The best way to use this technique is with a “master project” that
contains the shared code you use. Keep the master project
updated with all your shared code and any changes you make.

You can copy shared project items from the master project as
needed to your other projects. This allows you to re-use project
items without having to worry about changes affecting other
projects.

External Items
You can also convert project items to “External Project Items”.
An External Project Item can appear in multiple projects, so

changing the shared project item in one project changes it for all
projects. When you create an External Project Item, the item
becomes a file on disk (in either binary or XML format).

To convert a normal project item to an External Project Item,
open the contextual menu for the item in the Navigator (usually
by right-clicking on it) and select “Make External...”

This prompts you to choose a location for the file and to select
the type of the file. Your choices are Binary or XML. If your
External Project Item is going to be stored in a source control
system, you should choose XML instead of Binary.

External Project Items appear in the Navigator with a small arrow
icon superimposed on the normal icon.

You can also add existing External Project
Items that are on disk to a project. You do
this by dragging the file from the disk to the
Navigator while holding down ⌘+Option (on
OS X) or Shift+Ctrl (on Windows and Linux).

Note: If you make a change to an external

Section 1

Sharing Code Between Projects

83

Figure 5.1
External
Item in the
Navigator

project item in one project, the change is NOT automatically
reflected in any other projects that are open and also use the
same external project item. You have to close and reopen the
other projects in order to see the change.

84

A good developer always has backups of their source code. But
backups are not enough. You also want to use a Source Control
System. This is also sometimes called a Version Control System.

A source control system is able to track changes to individual
files, keeping a history of the changes and allowing you to go
back and look at prior versions of the file.

In order to use a source control system with your projects, you
first want to make sure you are using the Text Project (Xojo
Project) format. The Text project format saves each project item
as a separate text file on disk. Having separate files allows the
source control system to track changes to individual project
items. Text files allows you to use “Difference” tools to compare
differences between different versions of a file.

Subversion
Subversion (SVN) is probably the most commonly used version
control system. SVN uses a central “repository” or database that
contains your source code and all its versions.

The process for working with Subversion is as follows:

• Create a repository on the Subversion server

• Check Out the repository to a local computer. This is where
you edit your files.

• When you want to make your changes permanent, you Commit
them to the Subversion server. This also allows others on your
team to see the changes.

• If you have multiple developers working on a team, you use the
Update command to get changes added to the server by
others on your team.

You can control Subversion using the command-line tool, called
svn. But there are plenty of easy-to-use graphical tools that
work with Subversion, such as SmartSVN, RapidSVN, Versions
and Cornerstone.

Subversion Hosting
You can run a Subversion server on your development machine,
but having Subversion on an external server is a great way to
have an easy off-site backup of your source code.

Section 2

Using Source Control

85

You can choose to install Subversion on your own servers and
some web hosting companies provide Subversion hosting as an
optional feature.

There are also companies that offer Subversion hosting, such as
Code Spaces, Source Repo, Assembla and Beanstalk.

Setting up a Project with Subversion using Assembla and
SmartSVN
Assembla offers free Subversion hosting. And SmartSVN has a
free tool for working with Subversion. These steps walk you
through creating a Subversion repository at Assembla, adding a
project to it and then making and committing changes.

1. First, create an account with Assembla and then create a
repository. In this case, the repository Xojo is used at this
location: https://subversion.assembla.com/svn/xojo/

2. Download and install SmartSVN for your operating system:  
http://smartsvn.com

3. Run SmartSVN and let it finish its setup. It will eventually get
you to the first steps where you tell it you are ready to choose
a repository. Since you already created a repository with
Assembla, select “My repositories are already set up” and

click Finish: 

4. Click Cancel at this prompt regarding importing settings: 

86

https://subversion.assembla.com/svn/xojo/
https://subversion.assembla.com/svn/xojo/
http://smartsvn.com
http://smartsvn.com

5. Now you will check out the empty repository from Assembla.
Select “Check out project from repository” and click OK: 

6. Now it is time to specify the repository information. Fill in the
repository URL from Assembla (add trunk to the end of the
URL) and provide a location for the local files then click

Continue: 

7. Click Accept on the Server Fingerprint dialog.

8. At the Login window, enter the User Name and Password that
you used to create your Assembla account then click Login: 

87

9. Decide whether you want to create a Master Password on the
Master Password dialog, then click OK.

10. The repository will be checked out to the local folder and the
Summary window appears. Click Finish to check everything
out: 

11. When the checkout has completed you will see the main
window: 

12. In Finder or Windows Explorer, navigate to the local folder so
you can see the files that were checked out.

13. Create a new project in Xojo and select Save. Choose Xojo
Project as the format and enter a name such as
TestSVNProject. Choose your local Subversion folder as the
save location.

14. Go back to SmartSVN. You’ll see the project items are
displayed with “Unversioned” displayed as the “Local State”.
This means the files have not been added to the repository

88

yet. 

15. To add them to the repository, you Commit them. But before
you do this, you want to Ignore one of the files. The file called
“.TestSVNProject.xojo_uistate” tracks the position of the main
Xojo window, open tabs and other settings (there is no leading
“.” on this file on Windows). It should not be added to
Subversion. 
Right-click on it and select “Ignore” from the contextual
menu. Click OK on the Ignore dialog and you’ll see the file no
longer appears in SmartSVN.

16. Now you can commit the other files. Select them all and click
the Commit button on the toolbar. Click Continue on the
warning that appears. 
You are now prompted to enter a Commit Message. This is
text that you should enter to help describe the commit.
Having useful information in your Commit Messages is an
important part of successfully using any source control

system. In this case you can enter “Initial commit.” as the
message and click the Commit button: 

17. Now your project has been added to your Subversion
repository. As you make changes to the various items in the
project, you will see their “Local State” appear as “Modified”
in SmartSVN to indicate that it has changed. You should
Commit any local modifications you make to the repository so
that others can access the changes.

18. To see how a change works, go back to Xojo and change the
Title property of Window1 to “Test” and click Save. When you
go back to SmartSVN, you will see “Modified” as the Local
State for Window1.

You have now set up your first project with Subversion.

89

Additional Information
Subversion has other features for managing your project,
including:

• Ignore: For excluding files in your Subversion folder from being
managed by Subversion.

• Revert: For retrieving older versions of a file from the repository.

• Merge: Used to combine files that have been separately
modified by two or more people.

To learn everything there is to know about Subversion, read the
official Subversion book, Version Control with Subversion, which
is available for free online: http://svnbook.red-bean.com/

Git
Git is a source control system that is gaining in popularity. Unlike
Subversion, Git is a distributed source control system which does
not rely as heavily on a central repository for your source code.

Git Hosting
You can use Git completely on your local workstation, but there
are also hosting companies that offer centralized Git services
such as BitBucket, Code Spaces, Source Repo, Assembla and
Beanstalk.

You can control Git using the command-line tool, called git. But
there are plenty of easy-to-use graphical tools that work with Git,
such as SourceTree, SmartGit, GitHub and Gitbox.

Setting up a Project with Git and SmartGit
These steps describe how to use Git with your Xojo projects.

1. Download and install SmartGit: http://www.syntevo.com

2. Run SmartGit and accept the License Agreement.

3. Select “Non-commercial” use for Type of Usage and click
Continue: 

4. In the next screen, you need to specify the path to the Git
command-line executable. You will likely need to download
and install this separately (a link is included on the setup
screen). On OS X, it is located in /usr/local/git/bin/git. Enter

90

http://svnbook.red-bean.com
http://svnbook.red-bean.com
http://www.syntevo.com
http://www.syntevo.com

the location and click Continue: 

5. Leave the SSH Client setting at the default and click
Continue.

6. Now you can specify a User Name and E-Mail which are
stored along with your Commits: 

7. On the next screen, you can specify a hosting provider. For
this example, a hosting provider is not used, so select “I don’t
use a hosting provider.” and click Continue.

8. Click Finish on the last screen.

9. In the Project window that appears, select “Open an existing
local or create a new repository” and click OK: 

10. Select a folder for the Git repository and click Continue.

11. You will be prompted to choose the type of repository to
create. Click Git: 

91

12. Click Finish on the Project screen to open the project in
SmartGit: 

13. Now you can start Xojo and create a new project. Save the
project to the folder you selected, ensuring that you select
Xojo Project as the format.

14. Go back to SmartGit. You’ll see the project items as files in
the viewer. They will all have a “Working Tree State” of
Untracked. Select the file with the xojo_uistate extension,
right-click to open the contextual menu and select Ignore.
Click Ignore in the dialog that appears. This adds a file called
“.gitignore” to the folder.

15. Now you need to commit the files. Select all the files
(including the new .gitignore file) and click Commit on the
toolbar.

16. In the Commit window, enter a Commit Message, such as
“Initial commit.” and click the Commit & Push button.

17. The files will disappear from the SmartGit window. To make
them appear, select “View->Show Unchanged Files” from the
main menu. When you do this they all appear with a Working
Tree State of “Unchanged”.

18. Go back to the project and change the title of the default
window and save the project.

19. When you go back to SmartGit you will see the default
window now has a Working Tree State of Modified.

You have now set up your first project using Git.

Mercurial
Mercurial is a distributed version control system that is similar to
Git. Use the Git instructions above to use Mercurial with
SmartGit.

92

Chapter 6

Unit Testing

This chapter covers unit testing and the
Regressinator unit testing framework.

CONTENTS

6. Unit Testing

6.1. XojoUnit

What is Unit Testing?
Unit Testing is a concept for testing discrete components of your
application. Unit tests typically test behind-the-scenes objects,
methods and such. They do not test
the user interface of your application.
You typically run the unit tests
frequently to verify that your
application is behaving as expected.

As an example, a unit test might be
used to validate a calculation. Or it
might be used to verify data retrieval
from a database.

About XojoUnit
XojoUnit is a framework that makes it
easy for you to create your own unit
tests. The XojoUnit unit testing
framework is available on GitHub:

https://github.com/xojo/XojoUnit

XojoUnit works with desktop, web, console and iOS apps. Use
the appropriate version with the type of app you are creating.

XojoUnit Desktop has a window that displays the tests in your
application, provides a way for you to
run selected tests and displays test
results. XojoUnit Web displays the
results in a web page. XojoUnit
Console displays results in a terminal
or command prompt and also outputs
a text file with the results.

To use XojoUnit, copy the XojoUnit
folder from one of the example
projects to your project.

Adding your own tests is a simple
process:

•Create a test class (e.g. MyTests) as a
subclass of TestGroup.

•Create a subclass of TestController

Section 1

XojoUnit

94

Figure 6.1 XojoUnit Window

https://github.com/xojo/XojoUnit
https://github.com/xojo/XojoUnit

(e.g. XojoUnitController).

• Add your test subclass (MyTests) to InitializeTestGroups event
handler on XojoUnitController: 

 group = New MyTests(Self, "My Tests")

• Create methods in your test subclass class (MyTests) to do the
tests. The methods must end in “Test” in order for them to
appear in the XojoUnit results.

• Provide a way to display the results and run the tests. For
desktop apps, you want to show the TestWindow, for web apps
you want to show the TestPage and for console apps you want
to run the tests manually.

 A XojoUnit Example

Consider an application that has a method in a Calculate class
that is responsible for calculating sales tax and adding it to the
supplied amount. The code might look like this:

Sub AddSalesTax(amount As Currency,
pct As Double) As Currency
 Return amount + (amount * 0.10)
End Sub

Granted this is a very simple method, but it does have a bug in it.
The bug is obvious perhaps, but unit testing will help uncover it.

Here is an example of a XojoUnit test that tests a variety of
calculations to make sure the correct result is returned. First, you
need to create a test class to hold the unit test, so create a new
class called “SampleTests” and set its Super to “TestGroup”.

In XojoUnitController (a subclass of TestController), add this code
to the InitializeTestGroups event handler:

group = New SampleTests(Self, "Sample Tests")

95

Figure 6.2 XojoUnit with AddSalesTax Test

In the SampleTests class, add the following method to test the
Calculate.AddSalesTax function:

Sub AddSalesTaxTest
 Dim calc As New Calculate
 Dim result As Currency
 result = calc.AddSalesTax(10.00, 0.10)

 Assert.AreEqual(11.00, result)

 result = calc.AddSalesTax(20.00, 0.05)
 Assert.AreEqual(21.00, result)

 result = calc.AddSalesTax(10.00, 0.07)
 Assert.AreEqual(10.70, result)
End Sub

This unit test method creates an instance of the Calculate class
so that the AddSalesTax method can be called. It is called three
times and its result is compared with what is expected. The
comparison is done using the Assert.AreEqual method. If the two
values are the same, then the test passes. If the two values differ
then the test fails.

Run the project to see the XojoUnit window with the AddSalesTax
test displayed in the list.

Now click the Run Tests button on the toolbar. This will run the
test and display the results. In this case you’ll see that the test
failed.

Clicking on the test shows the details for the test, including how
long it took to run and the messages. Here you can see the

messages indicate that the values that were calculated are
different from what was expected. This is telling us that the
AddSalesTax method has an error in its calculation. Looking back
at the code, you should notice that it is using a hard-coded value
of 0.10 as the percent rather than using the pct parameter.

96

Figure 6.3 Test Result Failure

Quit the app and go back to the code for Calculate.AddSalesTax.
Update it so that it uses “pct” in place of “0.10”:

Sub AddSalesTax(amount As Currency,
pct As Double) As Currency
 Return amount + (amount * pct)
End Sub

Run the project again and click the Run Tests button.

Now you will see that the test has completed successfully.

The XojoUnit Window
Each test class can contain any number of tests. You can also
have any number of test classes.

You can uncheck a test class in the XojoUnit window to prevent
its tests from running.

The Export Results button will export the test results as a text file.

97

Figure 6.4 Successful Test Results

XojoUnit Assertions
In the above example, you used a method of the Assert class
called AreEqual. These are the other methods available to help
you write your tests:

• AreDifferent 
Checks if the two objects point to difference references or
instances.

• AreEqual 
This is the method you will use most often. It is overloaded for
these data types: Color, Currency, Date, Double (and array),
Int64, Integer (and array), String (and array).

• AreSame 
Checks if the two objects point to the same reference or
instance.

• Fail 
Used to manually fail a test and display a message.

• IsFalse 
Tests if the supplied boolean expression is False.

• IsNil 
Tests if the supplied object is Nil.

• IsNotNil 
Tests if the supplied object is not Nil.

• IsTrue 
Tests if the supplied boolean expression is True.

• Message 
Displays a message in the message area for the test.

• Pass 
Manually passes a test and displays a message.

98

Chapter 7

Sample
Applications

These applications are complete, working
applications that demonstrate a variety of the
available features.

CONTENTS

6. Sample Applications

6.1. Sliders

6.2. Eddie’s Electronics

Sliders is an application that lets you play the “slider puzzle”
game. In this game there are a series of number tiles on a grid in
a jumbled order. Your job is to put all the tiles in numerical order
in as few moves as possible.

This sample application is
available as both a desktop
and web application. It is
located in Examples/Sample
Applications.

Desktop
The desktop version of Sliders
(Sliders/
Sliders.xojo_binary_project)
works on Windows, OS X and
Linux and demonstrates
several features, including:

• Canvas

• Dynamic controls

• Object-oriented design

You play the game by clicking on a tile next to the empty square.
The tile you clicked then “slides” to the empty square. The
object is to put the tiles in numerical order in as few moves as
possible.

Each click counts as a move. There are three levels of play,
which correspond to the size of the grid. Easy is a 3x3 grid,
medium is a 4x4 grid and hard is a 5x5 grid.

Code Overview
Sliders primarily consists of two main objects: SlidersWindow
and SliderTileCanvas.

SlidersWindow is the main window that displays the tiles and
controls the gameplay.

SliderTileCanvas displays a single tile with a number.

SLIDERTILECANVAS

SliderTileCanvas is a subclass of Canvas (which is why it has
Canvas as a suffix). It is responsible for drawing the tile on the

Section 1

Sliders

100

Figure 7.1 Sliders Desktop
App

screen, including its background color and the number of the tile.
When a tile is clicked, the Action event definition is called.

Most of the code is in the Paint event, where it simply sets the
background color and fills the size of the tile to the color and then
draws the text in the Caption property (this contains the tile
number):

g.ForeColor = &c66CCFF
g.FillRect(0, 0, g.Width, g.Height)

g.ForeColor = &c0000FF
g.TextSize = 24
g.Bold = True
g.DrawString(Caption,
(g.Width-g.StringWidth(Caption))/2,

SliderTileCanvas is used on SlidersWindow to draw the tiles.

SLIDERSWINDOW

When you look at the window, you see that there is only a single
tile on it. This tile is part of a Control Set. At run-time the rest of
the tiles that are needed are added dynamically by the AddTiles
method based on the selected difficulty.

The DeleteTiles method removes all the tiles (except the first
one) so that the right number can be recreated when starting a
new game or changing the level.

When the user clicks on a tile, the ClickTile method is called. This
method verifies that the clicked tile can be moved and if so
switches it with the blank tile. This method also increases the
move counter.

ShuffleTiles shuffles the tiles for a new game. So that each game
is solvable, the tiles always start in numerical order. ShuffleTiles
essentially randomly clicks on tiles a large number of times to put
them in a random order. This is much like what you would do to
mix up a real Slider game.

101

Figure 7.2 Sliders Project with SlidersWindow
Selected

Lastly, the CheckForWinner method is called by the WinnerTimer
to check if all the tiles are in the correct order. It is done in a timer
so that there is a slight pause before the “You won” message
appears.

Web
The web version of Sliders (SlidersWeb.xojo_binary_project)
works in all supported browses and demonstrates several
features, including:

• Animator

• WebCanvas

• Dynamic Controls

In addition to
counting
moves and
having the
same levels
of difficulty
as the
desktop app,
the web
version can
save the
high scores if you enter your name. Since the high scores are

global to the web application, players that connect to the web
application can see the high scores of other players.

Code Overview
Sliders primarily consists of one main object: SlidersPage, the
main web page that displays the tiles and controls the gameplay.

In addition, SliderTileStyle is a Style that controls the look of the
tiles.

SLIDERPAGE

When you look at the web page, you see that there are no tiles on
it. SliderTileContainer is a ContainerControl that contains a single
tile. At run-time the tiles that are needed are added dynamically
to the web page by the AddTiles method based on the selected
difficulty.

The DeleteTiles method removes all the tiles so that the right
number can be recreated when starting a new game or changing
the level.

When the user clicks on a tile, the ClickTile method is called. This
method verifies that the clicked tile can be moved and if so
switches it with the blank tile. This method also increases the
move counter.

ShuffleTiles shuffles the tiles for a new game. So that each game
is solvable, the tiles always start in numerical order. ShuffleTiles

Figure 7.3 Sliders as a Web Application

102

essentially randomly clicks on tiles a large number of times to put
them in a random order. This is much like what you would do to
mix up a real Slider game.

Lastly, the CheckForWinner method is called by the WinnerTimer
to check if all the tiles are in the correct order. It is done in a timer
so that there is a slight pause before the “You won” message
appears.

HIGHSCORE

The HighScore class is used to track high scores for each player.
The LoadScores method on the web page loads high scores for
display on the page.

103

The Eddie’s Electronics sample application is a working
application for a fictitious company that sells electronics which is
available in the Sample Applications folder. The application
demonstrates many features, including:

• Use of a SQLite database

• Similarities between desktop and web applications

• Layout design and interaction between different windows and
web pages

This application is available as desktop, web and iOS apps,
which work similarly.

Desktop
The desktop application includes a pre-populated database with
sample data for many customers and orders. The database is

recreated each time the application runs, so any changes you
make to it are discarded when you quit the application.

Section 2

Eddie’s Electronics

104

Figure 7.4 Eddie’s Electronics Desktop Application

Click on a customer to view their information, a picture and to see
the orders that they have placed.

You can click on individual invoices to edit the order or you can
add new invoices for new orders.

Code Overview
The desktop application has four windows for displaying
information. The main window, CustomerDetailsWindows,
displays the customers and their orders. SearchWindow is a
dialog (a drop-down sheet on OS X) that lets you search for
customers. AboutWindow displays the logo and version.
InvoiceDetailsWindow is used to add or edit invoices.

The OrdersDatabase class handles all access to the database. It
has methods for finding customers, invoices and handling errors.

APP

The App class initializes the database in the Open event by
calling the shared method SetupNewDatabase.

ORDERSDATABASE

The OrdersDatabase class is a subclass of SQLiteDatabase. It is
used for all database access. The methods that find or get data
return a RecordSet that you can then process to display or
update data.

The shared method, SetupNewDatabase, creates a new in-
memory database for use by the app each time it starts.

CUSTOMERDETAILSWINDOW

The CustomerDetailsWindow is the first window that appears
when the application starts. It loads all the customers into the
CustomerList ListBox on the left (using the LoadCustomers
method).

When you click on a customer, its data is loaded into the fields
using the LoadCustomerFields method. Similarly, LoadInvoices
loads all the invoices for the customer into the InvoiceList
ListBox.

The SearchForCustomer method is used to find one or more
customers by name and is called when the Search feature is
used.

The Save method saves any changes made to the customer
fields back to the database.

INVOICEDETAILSWINDOW

The InvoiceDetails window displays invoice details for an existing
invoice and allow the data to be changed. It is also used to create
new invoices.

105

SELECTABLEPOPUPMENU

This is a subclass of PopupMenu and adds a method,
SelectValue, that will select a specific value in the popup. It is
used to select the appropriate state for a customer.

Web
The web version is very similar to the desktop version. You’ll
notice that the major Windows in the desktop application are Web
Pages in the web application.

The web application has error logging (to both a database and a
file).

The web
application
also uses the
MapViewer
control to
display the
customer’s
location on a
map.

CODE
OVERVIEW

The web application is structured similarly to the desktop
application, but there are several changes needed in order to
accommodate the needs of a web application.

First, since a web application is multi-user by default, a new
database is created for each session that connects to the web
application.

Figure 7.5 Eddie’s Electronics Web Application

106

The web application logs errors to a table and text file since it is
not possible to display a message unless a session is connected.

The Search feature is embedded in the toolbar instead of showing
a separate dialog.

The AboutDialog and InvoiceDetails are WebDialogs instead of
modal Windows.

The web version also has separate pages that are designed
specifically for small screen mobile devices such as an iPhone.

In short, much of the user interface layout is different for the web
application, but you will see that a lot of the code is almost
exactly the same or is extremely similar to the desktop version.

In particular, the web edition also uses the OrdersDatabase class
for all database communication.

SESSION

The Open event of the Session object is called each time a user
connects to the web application. In this event, a new in-memory
database is created.

CUSTOMERDETAILSPAGE

This is equivalent to CustomerDetailsWindow in the desktop
application. It displays when a user first connects to the web
application. It loads all the customers into the CustomerList
ListBox on the left (using the LoadCustomers method).

When you click on a customer, its data is loaded into the fields
using the LoadCustomerFields method. Similarly, LoadInvoices
loads all the invoices for the customer into the InvoiceList
ListBox.

The SearchForCustomer method is used to find one or more
customers by name and is called when the Search feature is
used.

The Save method saves any changes made to the customer
fields back to the database.

CUSTOMERINVOICEDIALOG

Equivalent to InvoiceWindow, the InvoiceDetailsDialog window
displays invoice details for an existing invoice and allow the data
to be changed. It is also used to create new invoices.

MOBILE SUPPORT FOLDER

The Mobile Support folder has several alternate pages that are
displayed when a user on a small mobile device connects to the
web application.

These pages have a different layout to show less information, but
generally work the same.

iOS
The iOS version of Eddie’s Electronics works similarly to the
desktop and web versions. The app consists of several views that

107

control each major area
of functionality, all
arranged within a TabBar.

CUSTOMERVIEW

This displays a list of all
the customers in the
database. Clicking on a
customer displays the
CustomerDetailView.

CUSTOMERDETAILVIEW

The view displays the detail information for the selected
customer. From here, the user can return to the list of customers,
click the Edit button to edit the customer, show the invoices for
the customer or open the Maps app with the location of the

customer. When the user clicks the Edit button, the
CustomerEditView is displayed.

CUSTOMEREDITVIEW

The CustomerEditView displays the customer information so that
it may be edited. Clicking Done saves the data back to the
database.

INVOICEVIEW

The InvoiceView displays all the invoices associated with the
customer.

SALESVIEW

The SalesView is accessible by clicking on the sales button in the
TabBar. This displays all sales data by quarter. Swipe left and
right to move between quarters.

CUSTOMER

The Customer class contains information about a specific that
gets loaded from the database. When the app starts, the
database table is loaded into an array of Customer instances.
This array serves as the DataSource for the table that displays the
list of customers.

INVOICE

The Invoice class contains information about the invoices for a
specific customer. This information is loaded from the database.

Figure 7.6 iOS Version of Eddie’s
Electronics

108

	1. Deploying Your Apps
	1.1 Windows
	1.2 OS X
	1.3 Linux
	1.4 Web
	1.5 iOS

	2. Cross-Platform Development
	2.1 UI Layout
	2.2 Conditional Compilation
	2.3 OS X Features
	2.4 Windows Features
	2.5 Localization

	3. Web Development
	3.1 Optimizing
	3.2 Porting
	3.3 Mobile

	4. Migrating from Other Tools
	4.1 Visual Basic
	4.2 MS Access
	4.3 FileMaker
	4.4 Visual FoxPro

	5. Code Management
	5.1 Sharing Code
	5.2 Source Control

	6. Unit Testing
	6.1 XojoUnit

	7. Sample Apps
	7.1 Sliders
	7.2 Eddie's Electronics

